首页> 外文期刊>Applied Microbiology >Nitrous Oxide Reduction Kinetics Distinguish Bacteria Harboring Clade I NosZ from Those Harboring Clade II NosZ
【24h】

Nitrous Oxide Reduction Kinetics Distinguish Bacteria Harboring Clade I NosZ from Those Harboring Clade II NosZ

机译:一氧化二氮的还原动力学将具有I类NosZ的细菌与具有I类NosZ的细菌区分开

获取原文
           

摘要

Bacteria capable of reduction of nitrous oxide (N_(2)O) to N_(2) separate into clade I and clade II organisms on the basis of nos operon structures and nosZ sequence features. To explore the possible ecological consequences of distinct nos clusters, the growth of bacterial isolates with either clade I ( Pseudomonas stutzeri strain DCP-Ps1, Shewanella loihica strain PV-4) or clade II ( Dechloromonas aromatica strain RCB, Anaeromyxobacter dehalogenans strain 2CP-C) nosZ with N_(2)O was examined. Growth curves did not reveal trends distinguishing the clade I and clade II organisms tested; however, the growth yields of clade II organisms exceeded those of clade I organisms by 1.5- to 1.8-fold. Further, whole-cell half-saturation constants ( K_(s) s) for N_(2)O distinguished clade I from clade II organisms. The apparent K_(s) values of 0.324 ± 0.078 μM for D. aromatica and 1.34 ± 0.35 μM for A. dehalogenans were significantly lower than the values measured for P. stutzeri (35.5 ± 9.3 μM) and S. loihica (7.07 ± 1.13 μM). Genome sequencing demonstrated that Dechloromonas denitrificans possessed a clade II nosZ gene, and a measured K_(s) of 1.01 ± 0.18 μM for N_(2)O was consistent with the values determined for the other clade II organisms tested. These observations provide a plausible mechanistic basis for why the relative activity of bacteria with clade I nos operons compared to that of bacteria with clade II nos operons may control N_(2)O emissions and determine a soil's N_(2)O sink capacity.IMPORTANCE Anthropogenic activities, in particular fertilizer application for agricultural production, increase N_(2)O emissions to the atmosphere. N_(2)O is a strong greenhouse gas with ozone destruction potential, and there is concern that nitrogen may become the major driver of climate change. Microbial N_(2)O reductase (NosZ) catalyzes N_(2)O reduction to environmentally benign dinitrogen gas and represents the major N_(2)O sink process. The observation that bacterial groups with clade I nosZ versus those with clade II nosZ exhibit distinct affinities to N_(2)O has implications for N_(2)O flux models, and these distinct characteristics may provide opportunities to curb N_(2)O emissions from relevant soil ecosystems.
机译:能够根据一氧化氮操纵子结构和nosZ序列特征将一氧化二氮(N_(2)O)还原为N_(2)的细菌分离为进化枝I和进化枝II生物。为了探索不同Nos簇的可能的生态后果,细菌分离株的生长具有进化支I(Pseudomonas stutzeri菌株DCP-Ps1,Shewanella loihica菌株PV-4)或进化支II(Dechloromonas aromaa RCB,厌氧厌氧杆菌2CP-C)。 )检查了具有N_(2)O的nosZ。生长曲线没有揭示区分测试的I类和II类生物的趋势;然而,进化枝II生物的生长产量比进化枝I生物的生长产量高1.5至1.8倍。此外,N_(2)O的全细胞半饱和常数(K_(s)s)区分了进化枝I和进化枝II生物。表观K_(s)值对D.aromatica为0.324±0.078μM,对A. dehalogenans为1.34±0.35μM,明显低于Stutzeri P.(35.5±9.3μM)和Loihica(7.07±1.13) μM)。基因组测序表明脱氮十氯单胞菌拥有进化枝II的nosZ基因,N_(2)O的K_(s)为1.01±0.18μM,与测试的其他进化枝II微生物的测定值一致。这些观察结果提供了一个合理的机理基础,说明为什么具有I类进化支操纵子的细菌与具有II类进化支操纵子的细菌的相对活性可以控制N_(2)O的排放并确定土壤的N_(2)O吸收能力。人为活动,特别是农业生产中的肥料施用,增加了向大气中的N_(2)O排放。 N_(2)O是一种具有破坏臭氧潜能的强温室气体,人们担心氮可能成为气候变化的主要驱动力。微生物N_(2)O还原酶(NosZ)催化将N_(2)O还原为对环境无害的氮气,代表了主要的N_(2)O吸收过程。具有I进化枝NosZ的细菌群体与具有II进化枝NosZ的细菌群体表现出对N_(2)O的独特亲和力的观察结果对N_(2)O通量模型具有影响,并且这些独特的特征可能为抑制N_(2)O排放提供了机会。来自相关的土壤生态系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号