首页> 外文期刊>Applied Microbiology >Changes in Microbial Biofilm Communities during Colonization of Sewer Systems
【24h】

Changes in Microbial Biofilm Communities during Colonization of Sewer Systems

机译:下水道系统定殖过程中微生物生物膜群落的变化

获取原文
           

摘要

The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H_(2)S) and methane (CH_(4)) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H_(2)S and CH_(4) production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H_(2)S emission was notably high (290.7 ± 72.3 mg S-H_(2)S liter~(?1) day~(?1)), whereas emissions of CH_(4) remained low (17.9 ± 15.9 mg COD-CH_(4) liter~(?1) day~(?1)). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera ). In turn, CH_(4) emissions increased after 1 year of biofilm growth (327.6 ± 16.6 mg COD-CH_(4) liter~(?1) day~(?1)), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development.
机译:在下水道内管表面形成的厌氧生物膜中,硫酸盐还原细菌(SRB)和产甲烷古菌(MA)的共存有利于作为代谢终产物的硫化物(H_(2)S)和甲烷(CH_(4))的积累,对排污系统造成严重影响。在这项研究中,我们调查了在生物膜发展的不同阶段中H_(2)S和CH_(4)的产生和排放速率随微生物生物膜群落组成的变化的时程。该研究是在实验室下水道中试工厂中进行的,该工厂使用过程数据和分子技术(例如,定量PCR [qPCR],变性梯度凝胶电泳[DGGE]和16S rRNA基因)模拟了一个完整的厌氧上升下水道。焦磷酸测序)。生物膜生长2周后,H_(2)S排放显着升高(290.7±72.3 mg S-H_(2)S升〜(?1)天〜(?1)),而CH_(4)的排放仍然存在低(17.9±15.9 mg COD-CH_(4)升〜(?1)天〜(?1))。这种相反的趋势恰好是一个稳定的SRB群落和一个仅由人类肠道产生的产甲烷菌组成的古生菌群落(即,Methanobrevibacter和Methanosphaera)。反过来,生物膜生长1年后,CH_(4)排放增加(327.6±16.6 mg COD-CH_(4)升〜(?1)天〜(?1)),这与物种对产甲烷菌移殖剂的替换更多有关。适应下水道条件(例如,甲烷菌属)。我们的研究提供的数据证实了我们的实验室实验系统有能力在硫化物和甲烷生产方面从微生物学和操作上模拟全尺寸下水道的功能,从而深入了解生物膜形成过程中关键微生物群的复杂动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号