...
首页> 外文期刊>MATEC Web of Conferences >Modeling of creep-fatigue interaction effects on crack growth at elevated temperatures
【24h】

Modeling of creep-fatigue interaction effects on crack growth at elevated temperatures

机译:蠕变-疲劳相互作用对高温下裂纹扩展的影响模型

获取原文
           

摘要

The well-known load frequency effect on creep-fatigue crack growth is explained by the interactions between fatigue and creep loading and is quantified using the concept of plasticity-induced crack closure. It is shown that the hold time during creep loading affects crack growth rates during subsequent fatigue cycles. Longer hold times lead to lower crack-tip opening stresses and faster crack growth rates during fatigue loading. To model the impact of hold time on crack opening stresses during fatigue loading, a strip-yield model was developed for creep-fatigue crack growth. The strip-yield model computes crack-tip opening stresses, which determine the effective stress intensity factor range and crack growth rate during the fatigue portion of each loading cycle. Maximum stress intensity factor is used to compute the crack growth rate during the creep portion of each cycle. The proposed strip-yield model is used to compute creep-fatigue crack growth rates for several structural materials, i.e., an Astroloy, aluminium alloy 2650 and 316 stainless steel. The model predictions of crack growth rates compare well with published experimental data for these alloys. This model achieves reliable predictions of crack growth rates and life prediction on components subjected to creep-fatigue loading at elevated temperatures by considering loading interaction effects.
机译:疲劳和蠕变载荷之间的相互作用解释了众所周知的载荷频率对蠕变疲劳裂纹扩展的影响,并使用可塑性引起的裂纹闭合的概念对其进行了量化。结果表明,蠕变载荷的保持时间会影响随后的疲劳循环中的裂纹扩展速率。较长的保持时间可导致疲劳载荷期间较低的裂纹尖端打开应力和较快的裂纹扩展速度。为了模拟疲劳载荷期间保持时间对裂纹张开应力的影响,建立了蠕变疲劳裂纹扩展的带屈服模型。条带屈服模型计算裂纹尖端的打开应力,该应力确定每个加载循环疲劳部分的有效应力强度因子范围和裂纹扩展速率。最大应力强度因子用于计算每个循环的蠕变部分期间的裂纹扩展速率。拟议的带材屈服模型用于计算几种结构材料(例如Astroloy,铝合金2650和316不锈钢)的蠕变疲劳裂纹扩展速率。裂纹扩展速率的模型预测与这些合金的已发布实验数据相吻合。该模型通过考虑载荷相互作用效应,实现了在高温下承受蠕变疲劳载荷的组件的裂纹扩展速率和寿命预测的可靠预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号