首页> 外文期刊>RSC Advances >Tailoring the delivery of therapeutic ions from bioactive scaffolds while inhibiting their apatite nucleation: a coaxial electrospinning strategy for soft tissue regeneration
【24h】

Tailoring the delivery of therapeutic ions from bioactive scaffolds while inhibiting their apatite nucleation: a coaxial electrospinning strategy for soft tissue regeneration

机译:量身定制来自生物活性支架的治疗离子,同时抑制其磷灰石成核:用于软组织再生的同轴电纺策略

获取原文
           

摘要

The delivery of therapeutic ions, as a key element for the regeneration of soft tissue, represents a viable alternative to conventional drugs. Primarily designed for the regeneration of hard tissue, degradable bioactive inorganic matrices are a carrier of choice for the delivery of ionic chemical cues. However, they nucleate calcium-phosphate crystal on their surface, which could be undesired for most soft tissue regeneration. Here, a coaxial electrospinning process was engineered, generating core–shell fibres with inorganic particles enclosed within a bio-inert polymeric shell. Silicon doped vaterite (SiV) dispersed in poly(L-lactic acid) was selected as an inorganic composite core and poly(D,L-lactide-co-glycolide) (PLGA) as a shell. By careful selection of the electrospinning parameters, fibres of constant diameter (≈10 μm) with controllable shell thickness (from 1.3 to 4.2 μm) were obtained. The release of calcium and silica followed the Weibull model, showing a purely diffusive release after hydration of the PLGA layer. The rate of release could be controlled with the shell thickness. The nucleation of calcium-phosphate crystals was inhibited. In addition, with the presence of a PLGA shell layer, the mechanical properties of the fibermats were greatly improved with, for instance, an increase of the Young's modulus up to 536% as compared to original composite. These non-woven porous materials are an affordable investigation platform to study the effect of local ionic release onto the surrounding cell metabolism.
机译:作为软组织再生的关键要素,治疗离子的输送代表了常规药物的可行替代方案。可降解的生物活性无机基质主要设计用于硬组织的再生,是递送离子化学线索的首选载体。然而,它们在其表面上使磷酸钙晶体成核,这对于大多数软组织再生而言可能是不希望的。在这里,设计了一种同轴电纺丝工艺,产生了核壳纤维,其无机颗粒包裹在生物惰性聚合物壳内。选择分散在聚( L -乳酸)中的硅掺杂球ate石(SiV)作为无机复合芯,聚( D L -丙交酯-(em> co <​​/ em>-乙交酯)(PLGA)作为外壳。通过仔细选择电纺丝参数,可以获得具有可控壳厚度(1.3至4.2μm)的恒定直径(≈10μm)的纤维。钙和二氧化硅的释放遵循Weibull模型,在PLGA层水合后显示出纯扩散释放。释放速率可以通过壳的厚度来控制。磷酸钙晶体的成核被抑制。此外,由于存在PLGA壳层,纤维毡的机械性能大大提高,例如,与原始复合材料相比,杨氏模量提高了536%。这些非织造多孔材料是可负担的研究平台,用于研究局部离子释放对周围细胞代谢的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号