首页> 外文期刊>RSC Advances >Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods
【24h】

Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods

机译:使用紫荆花荚中的磁性和非磁性可持续生物吸附剂修复镉和铅

获取原文
           

摘要

Bauhinia purpurea (Kaniar) pods were dried, powdered, and utilized for cadmium and lead removal. Bauhinia purpurea (Kaniar) pod powders (KPP) were converted into magnetic Bauhinia purpurea (Kaniar) powders (MKPP) by co-precipitation. Iron(II) sulfate and iron(III) sulfate were used as iron precursors. The biosorbents were extensively characterized using zero point charge measurements (pHPZC), ultimate and proximate analyses, Fourier transform infrared (FTIR) and FT-Raman spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), BET surface area (SBET) measurements, physical properties measurement system (PPMS), scanning electron microscopy (SEM) and energy dispersive X-ray fluorescence (EDXRF) techniques. The SBET of MKPP (52.0 m2 g?1) was higher than KPP (1.8 m2 g?1). Optimum Cd2+ and Pb2+ removal by KPP and MKPP was obtained at pH 5.0 and 4.5, respectively. Metal–ligand chelation, ion-exchange and hydrogen bonding were possible mechanisms for Cd2+ and Pb2+ removal. KPP and MKPP showed maximum Langmuir adsorption capacities of 11.1 and 4.8 mg g?1 for Cd2+ and 16.4 and 14.1 for Pb2+, respectively. Lead and cadmium kinetic data were best described using a pseudo-second-order equation. Cd2+ and Pb2+ removal was affected by the presence of Cu2+ during adsorption from a multicomponent aqueous environment. Cd2+ and Pb2+ remediation from actual groundwater was demonstrated. Fixed-bed studies for Pb2+ removal by KPP were also performed with a column capacity of 18.8 mg g?1 (column dia 2.0 cm; column length 40 cm; bed height 6.0 cm; pH 4.5; flow rate 5.0 mL min?1; Pb2+ conc. 10 mg L?1). Spent KPP was regenerated using 0.1 N HCl. Approximately 85% of total Pb2+ recovery was achieved using 100 mL 0.1 N HCl.
机译:紫荆花(Kaniar)豆荚干燥,粉化,然后用于去除镉和铅。通过共沉淀将紫荆花(Kaniar)荚粉(KPP)转化为磁性紫荆花(Kaniar)粉末(MKPP)。硫酸亚铁( II )和硫酸亚铁( III )用作铁前体。使用零点电荷测量(pH PZC ),最终和最接近的分析,傅里叶变换红外(FTIR)和FT-拉曼光谱,透射电子显微镜对生物吸附剂进行了广泛表征TEM),X射线衍射(XRD),BET表面积( S BET )测量,物理性能测量系统(PPMS),扫描电子显微镜(SEM)和能量色散X射线荧光(EDXRF)技术。 MKPP的 S BET (52.0 m 2 g ?1 )高于KPP(1.8 m 2 g ?1 )。 KPP和MKPP分别在pH 5.0和4.5下获得最佳的Cd 2 + 和Pb 2 + 去除效果。金属配体螯合,离子交换和氢键可能是Cd 2 + 和Pb 2 + 的可能机理去除。 KPP和MKPP对Cd 2 + 和16.4的最大Langmuir吸附能力分别为11.1和4.8 mg g ?1 和Pb 2 + 的14.1。铅和镉动力学数据最好使用伪二级方程来描述。 Cu 2的存在影响了Cd 2 + 和Pb 2 + 的去除+ 在多组分水溶液环境中的吸附过程中。演示了从实际地下水中修复Cd 2 + 和Pb 2 + 的方法。还进行了通过KPP去除Pb 2 + 的固定床研究,色谱柱容量为18.8 mg g ?1 (色谱柱直径2.0 cm;柱长40 cm;床高6.0 cm; pH 4.5;流速5.0 mL min <小> ?1 ; Pb 2 + 浓10 mg L ?1 )。用0.1 N HCl再生用过的KPP。使用100 mL 0.1 N HCl回收的Pb 2 + 总量约为85%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号