首页> 外文期刊>RSC Advances >Preparation and enhanced photocatalytic hydrogen-evolution activity of ZnGa2O4/N-rGO heterostructures
【24h】

Preparation and enhanced photocatalytic hydrogen-evolution activity of ZnGa2O4/N-rGO heterostructures

机译:ZnGa 2 O 4 / N-rGO杂结构的制备及增强的光催化氢放出活性

获取原文
           

摘要

Semiconductor–graphene composites have been widely reported as photocatalysts for hydrogen generation. The structure of the semiconductor, intimate interfacial contact between the components, and high electrical conductivity of the catalyst support can affect the performance of semiconductor–graphene composite photocatalysts. We successfully synthesized size-controlled ZnGa2O4 nanospheres by adjusting the amount of surfactant trisodium citrate, and assembled size-controlled ZnGa2O4 nanospheres on the two-dimensional platform of an N-doped reduced graphene oxide (N-rGO) sheet through the conventional and efficient hydrothermal method, during which the intimate interfacial contact between ZnGa2O4 nanospheres and the N-rGO sheet are achieved. The obtained photocatalysts were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet visible diffuse reflectance spectroscopy. The photocatalytic activity of the prepared samples for H2 evolution was tested using sodium sulfite as the sacrificial agent. The effects of the crystallinity, morphology, and specific surface area of the ZnGa2O4 samples on the rate of photocatalytic hydrogen production were studied. Considering the above three factors, the rate of H2 production was highest when the diameter of the ZnGa2O4 spheres reached 230 nm. The rate of H2 evolution of the ZnGa2O4/rGO and ZnGa2O4/N-rGO composites dramatically improved when compared with that of pure ZnGa2O4. ZnGa2O4/N-rGO had higher photocatalytic activity than ZnGa2O4/rGO because the nitrogen atoms in N-rGO could anchor the metal nanoparticles to form an intimate interfacial contact between N-rGO and ZnGa2O4, and N-rGO had higher electrical conductivity than rGO, resulting in more effective charge separation and transfer in the ZnGa2O4/N-rGO composites. This study offers a promising method to design more efficient graphene-based nanocomposite photocatalysts for enhancing photocatalytic activity.
机译:半导体-石墨烯复合材料已被广泛报道为可用于制氢的光催化剂。半导体的结构,组件之间的紧密界面接触以及催化剂载体的高电导率会影响半导体-石墨烯复合光催化剂的性能。我们通过调节表面活性剂柠檬酸三钠的量成功合成了尺寸受控的ZnGa 2 O 4 纳米球,并进行了组装N掺杂还原氧化石墨烯二维平台上尺寸受控的ZnGa 2 O 4 纳米球(N-rGO)薄板通过常规有效的水热方法,在此过程中,ZnGa 2 O 4 < / small>纳米球和N-rGO薄片得以实现。通过X射线粉末衍射,拉曼光谱,透射电子显微镜,X射线光电子光谱和紫外可见漫反射光谱对所得的光催化剂进行表征。以亚硫酸钠为牺牲剂,测试了制备的样品对H 2 的光催化活性。 ZnGa 2 O 4 样品的结晶度,形态和比表面积对速率的影响研究了光催化制氢的机理。考虑到上述三个因素,当ZnGa 2 O的直径最大时,H 2 的生产率最高 4 球体达到230 nm。 ZnGa 2 O 4 的H 2 演化速率 / rGO和ZnGa 2 O 4 / N-rGO复合材料与之相比有显着改善ZnGa 2 O 4 的制备。 ZnGa 2 O 4 / N-rGO的光催化活性高于ZnGa 2 < / sub> O 4 / rGO,因为N-rGO中的氮原子可以锚定金属纳米颗粒,从而在N-rGO和ZnGa之间形成紧密的界面接触 2 O 4 ,并且N-rGO的电导率比rGO高,从而导致更有效的电荷分离和在ZnGa 2 O 4 / N-rGO复合材料中转移。这项研究提供了一种有前途的方法来设计更有效的基于石墨烯的纳米复合光催化剂,以增强光催化活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号