首页> 外文期刊>RSC Advances >Novel III-Te–graphene van der Waals heterojunctions for optoelectronic devices
【24h】

Novel III-Te–graphene van der Waals heterojunctions for optoelectronic devices

机译:用于光电器件的新型III-Te-石墨烯范德华异质结

获取原文
           

摘要

Gallium telluride presents interesting properties for applications in optoelectronic devices, such as solar panels and radiation detectors. These applications, however, have been hindered due to the low mobility of charge carriers and short lifetime of photoexcitations in this material. In this work we propose that these limitations could be overcome by van der Waals heterostructures of recently exfoliated GaTe monolayers and graphene sheets, combining the high photoabsorption of the former with the ballistic transport of the latter. Our analysis indicates that such structures have a binding energy greater than that of graphene bilayers and that the band offset is such that transfer of photoexcited electrons from GaTe to graphene should be spontaneous. To investigate the consequences of the relative position of graphene's Dirac cone with the band edges of the photon absorber, we propose two hypothetical new materials with the same atomic arrangement as GaTe: InTe and TlTe. Thermodynamic and dynamical analyses indicate that monolayers of these crystals, which should also present high photoresponsivity, are stable. Specifically for the case of TlTe we found that the band edges should coincide with graphene's Dirac cone in the brillouin zone, resulting in optimal transfer of photoexcited carriers.
机译:碲化镓为光电器件(例如太阳能电池板和辐射探测器)中的应用提供了有趣的特性。然而,由于这种材料中电荷载流子的迁移率低和光激发寿命短而受到阻碍。在这项工作中,我们提出可以通过最近剥落的GaTe单层和石墨烯片的范德华力异质结构克服上述局限性,将前者的高光吸收与后者的弹道运输相结合。我们的分析表明,这种结构的结合能大于石墨烯双层的结合能,并且能带偏移使得光激发电子从GaTe转移到石墨烯应该是自发的。为了研究石墨烯的狄拉克锥与光子吸收器的能带边缘的相对位置的后果,我们提出了两种假设的新材料,它们的原子排列与GaTe相同:InTe和TlTe。热力学和动力学分析表明,这些晶体的单分子层也应该表现出高的光响应性,它们是稳定的。专门针对TlTe的情况,我们发现能带边缘应与布里林区中的石墨烯的Dirac锥重合,从而实现光激发载流子的最佳转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号