首页> 外文期刊>RSC Advances >Optical glucose sensors based on hexagonally-packed 2.5-dimensional photonic concavities imprinted in phenylboronic acid functionalized hydrogel films
【24h】

Optical glucose sensors based on hexagonally-packed 2.5-dimensional photonic concavities imprinted in phenylboronic acid functionalized hydrogel films

机译:基于压印在苯基硼酸官能化水凝胶膜中的六方堆积的2.5维光子凹面的光学葡萄糖传感器

获取原文
           

摘要

Continuous glucose monitoring aims to achieve accurate control of blood glucose concentration to prevent hypo/hyperglycaemia in diabetic patients. Hydrogel-based systems have emerged as a reusable sensing platform to quantify biomarkers in high-risk patients at clinical and point-of-care settings. The capability to integrate hydrogel-based systems with optical transducers will provide quantitative and colorimetric measurements via spectrophotometric analyses of biomarkers. Here, we created an imprinting method to rapidly produce 2.5D photonic concavities in phenylboronic acid functionalized hydrogel films. Our method exploited diffraction properties of hexagonally-packed 2.5D photonic microscale concavities having a lattice spacing of 3.3 μm. Illumination of the 2.5D hexagonally-packed structure with a monochromatic light source in transmission mode allowed reversible and quantitative measurements of variation in the glucose concentration based on first order lattice interspace tracking. Reversible covalent phenylboronic acid coupling with cis-diols of glucose molecules expanded the hydrogel matrix by ~2% and 34% in the presence of glucose concentrations of 1 mM and 200 mM, respectively. A Donnan osmotic pressure induced volumetric expansion of the hydrogel matrix due to increasing glucose concentrations (1–200 mM), resulted in a nanoscale modulation of the lattice interspace, and shifted the diffraction angle (~45° to 36°) as well as the interspacing between the 1st order diffraction spots (~8 to 3 mm). The sensor exhibited a maximum lattice spacing diffraction shift within a response time of 15 min in a reversible manner. The developed 2.5D photonic sensors may have application in medical point-of-care diagnostics, implantable chips, and wearable continuous glucose monitoring devices.
机译:连续血糖监测旨在实现对血糖浓度的精确控制,以预防糖尿病患者的低血糖/高血糖症。基于水凝胶的系统已成为一种可重复使用的传感平台,可用于量化临床和即时医疗机构中高危患者的生物标志物。将基于水凝胶的系统与光学传感器集成在一起的能力将通过生物标志物的分光光度分析提供定量和比色测量。在这里,我们创建了一种压印方法,可以在苯硼酸官能化的水凝胶薄膜中快速产生2.5D光子凹面。我们的方法利用了晶格间距为3.3μm的六方堆积的2.5D光子微尺度凹面的衍射特性。在透射模式下用单色光源照亮2.5D六边形堆积结构可以基于一阶晶格空间跟踪对葡萄糖浓度的变化进行可逆和定量的测量。在葡萄糖浓度分别为1 mM和200 mM的情况下,可逆的共价苯基硼酸与葡萄糖分子的顺式二醇偶联使水凝胶基质分别扩展了约2%和34%。唐南渗透压由于葡萄糖浓度增加(1-200 mM)而引起水凝胶基质的体积膨胀,导致晶格间隙的纳米级调节,并且衍射角(〜45°至36°)以及1 st 衍射点之间的间隔(约8至3 mm)。该传感器在15分钟的响应时间内以可逆方式显示出最大的晶格间距衍射位移。研发的2.5D光子传感器可能会应用于医疗现场诊断,植入式芯片和可穿戴式连续葡萄糖监测设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号