首页> 外文期刊>RSC Advances >Uncovering the rupture mechanism of carbon nanotube filled cis-1,4-polybutadiene via molecular dynamics simulation
【24h】

Uncovering the rupture mechanism of carbon nanotube filled cis-1,4-polybutadiene via molecular dynamics simulation

机译:通过分子动力学模拟揭示碳纳米管填充的顺式1,4-聚丁二烯的断裂机理

获取原文
           

摘要

In this work, by employing molecular dynamics simulations in a united atomistic resolution, we explored the rupture mechanism of carbon nanotube (CNT) filled cis -1,4-polybutadiene (PB) nanocomposites. We observed that the rupture resistance capability increases with the interfacial interaction between PB and CNTs, as well as the loading of CNTs, attributed to the enhanced chain orientation along the deformed direction to sustain the external force, particularly those near voids. The number of voids is quantified as a function of the strain, exhibiting a non-monotonic behavior because of the coalescence of small voids into larger ones at high strain. However, the number of voids is greatly reduced by stronger PB–CNT interaction and higher loading of CNTs. During the rupture process, the maximum van der Waals energy change reflects the maximum conformational transition rate and the largest number of voids. Meanwhile, the strain at the maximum orientation degree of bonds is roughly consistent with that at the maximum square radius of gyration of chains. After the failure, the stress gradually decreases with the strain, accompanied by the contraction of the highly orientated polymer bundles. In particular, with weak interfacial interaction, the nucleation of voids occurs in the interface, and in the polymer matrix in the strong case. In general, this work could provide some fundamental understanding of the voids occurring in polymer nanocomposites (PNCs), with the aim to design and fabricate high performance PNCs.
机译:在这项工作中,通过在统一的原子分辨率下应用分子动力学模拟,我们探索了碳纳米管(CNT)填充的顺式-1,4-聚丁二烯(PB)纳米复合材料的破裂机理。我们观察到,抗断裂能力随着PB和CNT之间的界面相互作用以及CNT的负载而增加,这归因于沿变形方向增强的链取向,以维持外力,尤其是靠近空隙的外力。空隙的数量被量化为应变的函数,由于在高应变时小空隙合并成较大的空隙,因此表现出非单调行为。但是,更强的PB-CNT相互作用和更高的CNT负载量大大减少了空隙的数量。在破裂过程中,最大的范德华能量变化反映了最大的构象转变速率和最大的空隙数。同时,在键的最大取向度处的应变与在链的旋转的最大平方半径处的应变大致一致。破坏后,应力随着应变逐渐减小,伴随着高度取向的聚合物束的收缩。特别是,在界面相互作用较弱的情况下,在牢固的情况下,界面的乃至聚合物基体中都会发生空隙的形核。通常,这项工作可以提供对聚合物纳米复合材料(PNC)中出现的空隙的一些基本了解,以设计和制造高性能PNC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号