首页> 外文期刊>RSC Advances >Fabrication of double core–shell Si-based anode materials with nanostructure for lithium-ion battery
【24h】

Fabrication of double core–shell Si-based anode materials with nanostructure for lithium-ion battery

机译:锂离子电池纳米结构双核壳硅基负极材料的制备

获取原文
           

摘要

Yolk–shell structure is considered to be a well-designed structure of silicon-based anode. However, there is only one point (point-to-point contact) in the contact region between the silicon core and the shell in this structure, which severely limits the ion transport ability of the electrode. In order to solve this problem, it is important that the core and shell of the core–shell structure are closely linked (face-to-face contact), which ensures good ion diffusion ability. Herein, a double core–shell nanostructure (Si@C@SiO _(2) ) was designed for the first time to improve the cycling performance of the electrode by utilising the unique advantages of the SiO _(2) layer and the closely contacted carbon layer. The improved cycling performance was evidenced by comparing the cycling properties of similar yolk–shell structures (Si@void@SiO _(2) ) with equal size of the intermediate shell. Based on the comparison and analysis of the experimental data, Si@C@SiO _(2) had more stable cycling performance and exceeded that of Si@void@SiO _(2) after the 276 ~(th) cycle. More interestingly, the electron/ion transport ability of electrode was further improved by combination of Si@C@SiO _(2) with reduced graphene oxide (RGO). Clearly, at a current density of 500 mA g ~(?1) , the reversible capacity was 753.8 mA h g ~(?1) after 500 cycles, which was 91% of the specific capacity of the first cycle at this current density.
机译:蛋壳结构被认为是硅基阳极的设计良好的结构。然而,在该结构中,在硅核与壳体之间的接触区域中仅存在一个点(点对点接触),这严重限制了电极的离子传输能力。为了解决这个问题,重要的是将核-壳结构的核和壳紧密连接(面对面接触),以确保良好的离子扩散能力。在本文中,首次设计了双核壳纳米结构(Si @ C @ SiO _(2)),以利用SiO _(2)层和紧密接触的独特优势来改善电极的循环性能。碳层。通过比较类似卵黄-壳结构(Si @ void @ SiO _(2))和相等大小的中间壳的循环性能,可以证明循环性能得到了改善。通过对实验数据的比较和分析,Si @ C @ SiO _(2)的循环性能更加稳定,在276〜(th)次循环后超过了Si @ void @ SiO_(2)。更有趣的是,通过将Si @ C @ SiO_(2)与还原的氧化石墨烯(RGO)结合,可进一步提高电极的电子/离子传输能力。显然,在500 mA g〜(?1)的电流密度下,500个循环后的可逆容量为753.8 mA h g〜(?1),是该电流密度下第一循环的比容量的91%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号