首页> 外文期刊>RSC Advances >Formation of intrinsic and silicon defects in MoO3 under varied oxygen partial pressure and temperature conditions: an ab initio DFT investigation
【24h】

Formation of intrinsic and silicon defects in MoO3 under varied oxygen partial pressure and temperature conditions: an ab initio DFT investigation

机译:不同氧分压和温度条件下MoO 3 中本征和硅缺陷的形成:从头算 DFT研究

获取原文
           

摘要

Molybdenum trioxide (MoO3) is a promising material for energy conversion applications, including recent uses as a hole selective contact in silicon photovoltaic devices. The electrical and chemical properties of MoO3 are known to be strongly sensitive to the presence of intrinsic and extrinsic defects, which in turn are dependent on the fabrication route and processing conditions used to form the device layers. Of particular interest to this study were intrinsic defects comprising oxygen vacancies and extrinsic defects involving possible contaminant silicon atoms. Density functional theory simulations were used to predict defect concentrations as a function of processing temperature and oxygen partial pressure. A rigorous method is outlined to calculate defect formation energies for all intrinsic defects in MoO3, resolving conflicting information arising from previous studies. Brouwer diagrams were constructed and used to show that the charge neutral oxygen vacancy is dominant under most of the temperature and oxygen partial pressure conditions investigated. It was also shown that at commonly-used processing temperatures and oxygen partial pressures, silicon interstitials in MoO3 can introduce a spin-polarised defect state 0.5?eV above the MoO3 valence band maximum. Their concentration in MoO3 may reach 1.3 ppm with processing conditions of 700 K and 10?6 atm oxygen partial pressure, and this concentration is predicted to increase dramatically with higher temperatures and/or lower oxygen partial pressures. Our findings highlight the possibility of silicon contamination in hole-selective contact layers for silicon photovoltaic devices, with a potential increase in the parasitic absorption due to silicon defects in the contact layers reducing energy conversion efficiency.
机译:三氧化钼(MoO 3 )是用于能量转换应用的有前途的材料,包括最近在硅光伏器件中用作空穴选择性接触的用途。众所周知,MoO 3 的电学和化学性质对内在和外在缺陷的存在都非常敏感,而这些缺陷又取决于制造工艺和所使用的加工条件形成器件层。该研究特别感兴趣的是包括氧空位的内在缺陷和涉及可能的污染硅原子的外在缺陷。密度泛函理论模拟被用来预测缺陷浓度作为处理温度和氧气分压的函数。概述了一种严格的方法来计算MoO 3 中所有固有缺陷的缺陷形成能,以解决先前研究中产生的矛盾信息。构造了燃烧器图,并用来显示在所研究的大多数温度和氧分压条件下,电荷中性氧空位占主导。研究还表明,在常用的加工温度和氧分压下,MoO 3 中的硅间隙会在MoO <0.5上引入自旋极化缺陷态。 small> 3 价带最大值。在700 K和10 ?6 atm氧气部分的处理条件下,它们在MoO 3 中的浓度可能达到1.3 ppm。随着温度升高和/或氧气分压降低,该浓度将急剧增加。我们的发现突出了硅光伏器件的空穴选择接触层中硅污染的可能性,由于接触层中的硅缺陷导致寄生吸收的潜在增加,降低了能量转换效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号