首页> 外文期刊>RSC Advances >Revealing the deformation mechanism of amorphous polyethylene subjected to cycle loading via molecular dynamics simulations
【24h】

Revealing the deformation mechanism of amorphous polyethylene subjected to cycle loading via molecular dynamics simulations

机译:通过分子动力学模拟揭示无定形聚乙烯在循环载荷下的变形机理

获取原文
           

摘要

Despite tremendous efforts being devoted to the study of the deformation behavior of polyethylene, the deformation mechanism of an amorphous polyethylene polymer under cycle shear-loading remains largely unknown. Here, we report the cycle shear deformation mechanism of an amorphous polyethylene polymer using molecular dynamics (MD) simulations. The stress–strain behaviors, including the elastic, yield, strain hardening, and strain softening regions, are qualitatively in agreement with the previous results. The values of the yield stress, Young's modulus and ultimate strength obtained from MD simulations are consistent with the previous data. The effects of the shear strain rate, temperature, and cycle shear-loading number on the stress–strain behaviors are investigated. Higher strain rate and a lower temperature result in a higher strength in the amorphous polyethylene polymer, attributed to the agglomeration of high local strains. With the increase of the cycle shear-loading number, the high strain region gradually expands from the upper and lower surface to the interior of the polyethylene polymer matrix, which provides the origin of crack initiation. The energy contributions are used in elucidating the inherent deformation mechanisms within the elastic, yielding, strain hardening, and strain softening regions, and the variation trend of energy is consistent with the stress–strain response.
机译:尽管人们致力于研究聚乙烯的变形行为,但是在循环剪切载荷下无定形聚乙烯聚合物的变形机理仍然是未知的。在这里,我们报告使用分子动力学(MD)模拟的非晶态聚乙烯聚合物的循环剪切变形机理。应力-应变行为,包括弹性,屈服,应变硬化和应变软化区域,在质量上与先前的结果一致。通过MD模拟获得的屈服应力,杨氏模量和极限强度的值与先前的数据一致。研究了剪切应变速率,温度和循环剪切载荷数对应力-应变行为的影响。较高的应变速率和较低的温度导致非晶态聚乙烯聚合物的强度较高,这归因于高局部应变的团聚。随着循环剪切载荷数的增加,高应变区域从聚乙烯聚合物基体的上表面和下表面逐渐扩展到内部,这是产生裂纹的起点。能量贡献用于阐明弹性,屈服,应变硬化和应变软化区域内的固有变形机制,并且能量的变化趋势与应力-应变响应一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号