首页> 外文期刊>RSC Advances >Cooperative effects between π-hole triel and π-hole chalcogen bonds
【24h】

Cooperative effects between π-hole triel and π-hole chalcogen bonds

机译:π孔Triel和π孔硫属元素键之间的协同作用

获取原文
           

摘要

MP2/aug-cc-pVTZ calculations have been performed on π-hole triel- and chalcogen-bonded complexes involving a heteroaromatic compound. These complexes are very stable with large interaction energy up to ?47 kcal mol ~(?1) . The sp ~(2) -hybridized nitrogen atom engages in a stronger π-hole bond than the sp-hybridized species although the former has smaller negative electrostatic potential. The sp ~(2) -hybridized oxygen atom in 1,4-benzoquinone is a weaker electron donor in the π-hole bond than the sp ~(2) -hybridized nitrogen atom. The π-hole triel bond is stronger than the π-hole chalcogen bond. A clear structural deformation is found for the triel or chalcogen donor molecule in these π-hole-bonded complexes. The triel bond exhibits partially covalent interaction, whereas the chalcogen bond exhibits covalent interaction in the SO _(3) complexes of pyrazine and pyridine derivatives with a sp ~(2) -hybridized nitrogen atom. Intermolecular charge transfer (>0.2 e ) occurs to a considerable extent in these complexes. In ternary complexes involving an aromatic compound, wherein a triel bond and a chalcogen bond coexist, both the interactions are weakened or strengthened when the central aromatic molecule acts as a double Lewis base or plays a dual role of both a base and an acid. Both electrostatic and charge transfer effects have important contributions toward changes in the strength of both interactions.
机译:已对涉及杂芳族化合物的π孔Triel键和硫族元素键合的复合物进行了MP2 / aug-cc-pVTZ计算。这些配合物非常稳定,具有高达47 kcal mol〜(?1)的大相互作用能。尽管sp〜(2)杂化的氮原子具有较小的负静电势,但它比sp杂化的物种具有更强的π空穴键。 1,4-苯醌中的sp〜(2)杂化的氧原子比sp〜(2)杂化的氮原子在π孔键中的电子供体更弱。 π孔Triel键比π孔硫属元素键强。在这些π孔键合的配合物中,triel或硫族元素供体分子具有明显的结构变形。 Triel键显示部分共价相互作用,而硫属元素键在吡嗪和吡啶衍生物与sp〜(2)杂化的氮原子的SO_(3)配合物中显示共价相互作用。在这些配合物中,分子间的电荷转移(> 0.2 e)在相当大的程度上发生。在涉及芳族化合物的三元络合物中,其中三醇键和硫族元素键共存,当中心芳族分子充当双路易斯碱或同时起碱和酸的双重作用时,两者的相互作用均减弱或增强。静电和电荷转移效应都对两种相互作用强度的变化有重要贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号