首页> 外文期刊>RSC Advances >Computational analysis of mesoscale thermomechanical ignition behavior of impacted LLM-105 based explosives
【24h】

Computational analysis of mesoscale thermomechanical ignition behavior of impacted LLM-105 based explosives

机译:冲击型LLM-105炸药的中尺度热机械点火行为的计算分析

获取原文
           

摘要

LLM-105 (2,6-diamino-3,5-dinitropyrazine-1-oxide) is an insensitive high explosive crystal which has performance between that of HMX and TATB. An elastoviscoplastic dislocation model is developed for LLM-105 crystal, which accounts for the dislocation evolutions at the crystal interior and crystal wall and strain-rate dependent work hardening. Three different crystal morphology (cubic, icosahedral, rodlike) of LLM-105 based explosive computational models were constructed and subjected to an impact velocity of 200 m s ~(?1) and 500 m s ~(?1) . Effects of crystal morphology and initial dislocation density on thermomechanical ignition behavior of LLM-105 based explosives were analyzed. Dislocation density of both crystal interiors and crystal walls in the rodlike LLM-105 based explosive increases slower than that in the cubic and icosahedral explosives. Both the volume averaged and localized stress and dislocation density are the lowest for the rodlike explosive. At the impact velocity of 500 m s ~(?1) , a temperature rise due to volumetric work, plasticity work and chemical reaction is sufficiently high to lead to the ignition of the cubic explosive, which shows that the rodlike explosive is the least sensitive among the three explosives. Moreover, with the increase of initial dislocation density, the corresponding volume averaged and localized stress and temperature increase as well. Results presented bridge the macroscale thermomechanical ignition response with the mesoscale deformation mechanisms, which is essential for better understanding the ignition mechanisms and guiding the design of LLM-105 based formulations.
机译:LLM-105(2,6-二氨基-3,5-二硝基吡嗪-1-氧化物)是一种不敏感的高爆炸性晶体,其性能介于HMX和TATB之间。针对LLM-105晶体开发了弹性粘塑性位错模型,该模型解释了晶体内部和晶体壁的位错演变以及应变速率相关的加工硬化。构造了基于LLM-105爆炸计算模型的三种不同的晶体形态(立方,二十面体,棒状),并经受了200 m s〜(?1)和500 m s〜(?1)的撞击速度。分析了晶体形态和初始位错密度对LLM-105基炸药热机械着火行为的影响。基于棒状的LLM-105炸药的晶体内部和晶体壁的位错密度的增加要慢于立方和二十面体炸药的晶体。棒状炸药的体积平均和局部应力与位错密度最低。在500 ms〜(?1)的冲击速度下,由于体积功,可塑性功和化学反应引起的温度升高足够高,从而导致立方炸药着火,这表明棒状炸药是最不敏感的。这三种炸药。而且,随着初始位错密度的增加,相应的体积平均和局部应力和温度也增加。提出的结果弥合了宏观尺度的热机械点火响应和中尺度的变形机理,这对于更好地理解点火机理和指导基于LLM-105的配方设计至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号