首页> 外文期刊>RSC Advances >Thermal conductivity and molecular heat transport of nanofluids
【24h】

Thermal conductivity and molecular heat transport of nanofluids

机译:纳米流体的热导率和分子热传递

获取原文
           

摘要

Fluid media such as water and ethylene glycol are usually quite poor conductors of heat. Nanoparticles can improve the thermal properties of fluids in a remarkable manner. Despite a plethora of experimental and theoretical studies, the underlying physics of heat transport in nanofluids is not yet well understood. Furthermore, the link between nanoscale energy transport and bulk properties of nanofluids is not fully established. This paper presents a thermal conductivity model, encapsulating solid–liquid interfacial thermal resistance, particle shape factor and the variation of thermal conductivity across a physisorbed fluidic layer on a nanoparticle surface. The developed model for thermal conductivity integrates the interfacial Kapitza resistance, the characteristics of a nanolayer, convective diffusion and surface energy with capillary condensation. In addition, the thickness of the nanolayer is predicted using the Brunauer–Emmett–Teller (BET) isotherms and microano-menisci generated pressures of condensation. Such a comprehensive model for thermal conductivity of nanoparticles and systematic study has not hitherto been reported in the literature. The thermal conductivity model is evaluated using experimental data available in open literature.
机译:诸如水和乙二醇之类的流体介质通常是非常差的热导体。纳米粒子可以显着改善流体的热性能。尽管进行了大量的实验和理论研究,但纳米流体中传热的基本物理原理尚未广为人知。此外,纳米级能量传输和纳米流体的整体性质之间的联系尚未完全建立。本文提出了一种导热模型,封装了固液界面的热阻,颗粒形状因子以及纳米颗粒表面上物理吸附的流体层的导热系数的变化。所开发的导热系数模型整合了界面Kapitza电阻,纳米层的特性,对流扩散和具有毛细管冷凝作用的表面能。此外,使用Brunauer-Emmett-Teller(BET)等温线和微观/纳米弯月面产生的冷凝压力可预测纳米层的厚度。迄今为止尚未在文献中报道过这种用于纳米颗粒导热性的全面模型和系统研究。使用公开文献中提供的实验数据评估导热系数模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号