首页> 外文期刊>RSC Advances >Photo-enhanced gas sensing of SnS2 with nanoscale defects
【24h】

Photo-enhanced gas sensing of SnS2 with nanoscale defects

机译:具有纳米级缺陷的SnS2的光增强气敏

获取原文
           

摘要

Recently a SnS _(2) based NO _(2) gas sensor with a 30 ppb detection limit was demonstrated but this required high operation temperatures. Concurrently, SnS _(2) grown by chemical vapor deposition is known to naturally contain nanoscale defects, which could be exploited. Here, we significantly enhance the performance of a NO _(2) gas sensor based on SnS _(2) with nanoscale defects by photon illumination, and a detection limit of 2.5 ppb is achieved at room temperature. Using a classical Langmuir model and density functional theory simulations, we show S vacancies work as additional adsorption sites with fast adsorption times, higher adsorption energies, and an order of magnitude higher resistance change compared with pristine SnS _(2) . More interestingly, when electron–hole pairs are excited by photon illumination, the average adsorption time first increases and then decreases with NO _(2) concentration, while the average desorption time always decreases with NO _(2) concentration. Our results give a deep understanding of photo-enhanced gas sensing of SnS _(2) with nanoscale defects, and thus open an interesting window for the design of high performance gas sensing devices based on 2D materials.
机译:最近,已经证明了基于SnS _(2)的NO _(2)气体传感器的检测极限为30 ppb,但这需要较高的工作温度。同时,已知通过化学气相沉积生长的SnS_(2)自然包含纳米级缺陷,可以加以利用。在这里,我们通过光子照射显着提高了具有纳米级缺陷的基于SnS _(2)的NO _(2)气体传感器的性能,在室温下的检测极限为2.5 ppb。使用经典的Langmuir模型和密度泛函理论模拟,我们显示出S空位是额外的吸附位点,与原始SnS _(2)相比具有更快的吸附时间,更高的吸附能以及更高的数量级电阻变化。更有趣的是,当通过光子照射激发电子-空穴对时,平均吸附时间首先随着NO _(2)的浓度增加然后减少,而平均解吸时间总是随着NO _(2)的浓度减少。我们的结果使人们对具有纳米级缺陷的SnS _(2)的光增强气体传感有了更深入的了解,从而为基于2D材料的高性能气体传感设备的设计打开了一个有趣的窗口。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号