首页> 外文期刊>RSC Advances >A chemical-bond-driven edge reconstruction of Sb nanoribbons and their thermoelectric properties from first-principles calculations
【24h】

A chemical-bond-driven edge reconstruction of Sb nanoribbons and their thermoelectric properties from first-principles calculations

机译:基于第一性原理的化学键驱动的Sb纳米带边缘重构及其热电特性

获取原文
           

摘要

We present a theoretical study on the potential thermoelectric performance of antimony nanoribbons (SNRs). Based on density functional theory and the semiclassical transport model, the thermoelectric figure of merit ZT was calculated for various Sb nanoribbon sizes and different chiralities. The results indicated that the chemical-bond-driven edge reconstruction of nanoribbons (denoted as SNRs-recon) eliminated all of the dangling bonds and passivated all of the boundary antimony atoms with 3-fold coordination. SNRs-recon are the most energy favorable compared to the ribbons with unsaturated edge atoms. Semimetal to semiconductor transition occurred in SNRs-recon. The band gap was width-dependent in armchair SNRs (denoted as ASNRs-recon), whereas it was width-independent in zigzag SNRs (ZSNRs-recon). After nanolization and reconstruction, the TE properties of SNRs were enhanced due to higher Seebeck coefficient and lower thermal conductivity. The thermoelectric properties of n-doped ASNRs-recon and p-doped ZSNRs-recon showed width-dependent odd–even oscillation and eventually resulted in ZT values of 0.75 and 0.60, respectively. Upon increasing the ribbon width, ZT of n-doped ASNRs-recon decreased and approached a constant value of about 0.85. However, n-doped ZSNRs-recon exhibited poor TE performance compared with the others. Importantly, the ZT value could be optimized to as high as 1.91 at 300 K, which was larger than those of Sb-based bulk materials and 100 times that of thin Sb films. These optimizations make the materials promising room-temperature high-performance thermoelectric materials. Furthermore, the proposed new concept of chemical-bond-driven edge reconstruction may be useful for many other related systems.
机译:我们目前就锑纳米带(SNRs)的潜在热电性能进行理论研究。基于密度泛函理论和半经典输运模型,计算了各种Sb纳米带尺寸和不同手性的热电性能因数ZT。结果表明,化学键驱动的纳米带边缘重建(表示为SNRs-recon)消除了所有的悬空键,并以3倍配位率钝化了所有的边界锑原子。与具有不饱和边缘原子的带相比,SNRs-concon是最有利的能量。从半金属到半导体的转变发生在SNRs-recon中。带隙在扶手椅式SNR(表示为ASNRs-recon)中与宽度相关,而在之字形SNR(ZSNRs-recon)中与宽度无关。经过纳米化和重建后,由于较高的塞贝克系数和较低的热导率,SNR的TE特性得到了增强。 n掺杂的ASNRs-recon和p掺杂的ZSNRs-recon的热电特性显示出与宽度相关的奇偶振荡,最终导致ZT值分别为0.75和0.60。随着带宽度的增加,n掺杂的ASNRs-recon的ZT减小并接近约0.85的恒定值。然而,与其他相比,n掺杂ZSNRs-recon表现出较差的TE性能。重要的是,在300 K时ZT值可以优化到高达1.91,这比Sb基块状材料的ZT值大,并且是Sb薄膜的100倍。这些优化使该材料有望成为室温下高性能的热电材料。此外,提出的化学键驱动边缘重建的新概念可能对许多其他相关系统有用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号