首页> 外文期刊>The Astrophysical journal >Simulations of Early Structure Formation: Primordial Gas Clouds
【24h】

Simulations of Early Structure Formation: Primordial Gas Clouds

机译:早期结构形成的模拟:原始气云

获取原文
           

摘要

We use cosmological simulations to study the origin of primordial star-forming clouds in a ΛCDM universe, by following the formation of dark matter halos and the cooling of gas within them. To model the physics of chemically pristine gas, we employ a nonequilibrium treatment of the chemistry of nine species (e?, H, H+, He, He+, He++, H2, H, H?) and include cooling by molecular hydrogen. By considering cosmological volumes, we are able to study the statistical properties of primordial halos, and the high resolution of our simulations enables us to examine these objects in detail. In particular, we explore the hierarchical growth of bound structures forming at redshifts z ≈ 25-30 with total masses in the range ≈105-106 M☉. We find that when the amount of molecular hydrogen in these objects reaches a critical level, cooling by rotational line emission is efficient, and dense clumps of cold gas form. We identify these "gas clouds" as sites for primordial star formation. In our simulations, the threshold for gas cloud formation by molecular cooling corresponds to a critical halo mass of ≈5 × 105 h-1 M☉, in agreement with earlier estimates, but with a weak dependence on redshift in the range z 16. The complex interplay between the gravitational formation of dark halos and the thermodynamic and chemical evolution of the gas clouds compromises analytic estimates of the critical H2 fraction. Dynamical heating from mass accretion and mergers opposes relatively inefficient cooling by molecular hydrogen, delaying the production of star-forming clouds in rapidly growing halos. We also investigate the effect of photodissociating ultraviolet radiation on the formation of primordial gas clouds. We consider two extreme cases, first by including a uniform radiation field in the optically thin limit and second by accounting for the maximum effect of gas self-shielding in virialized regions. For radiation with Lyman-Werner band flux J 10-23 ergs s-1 cm-2 Hz-1 sr-1, hydrogen molecules are rapidly dissociated, rendering gas cooling inefficient. In both the cases we consider, the overall effect can be described by computing an equilibrium H2 abundance for the radiation flux and defining an effective shielding factor. Based on our numerical results, we develop a semianalytic model of the formation of the first stars and demonstrate how it can be coupled with large N-body simulations to predict the star formation rate in the early universe.
机译:我们通过观察暗物质光环的形成和其中气体的冷却,使用宇宙学模拟研究ΛCDM宇宙中原始恒星形成云的起源。为了模拟原始化学气体的物理模型,我们对九种物质(例如,H,H +,He,He +,He ++,H2,H,H2)的化学性质进行了非平衡处理,并包括通过分子氢的冷却。通过考虑宇宙学量,我们能够研究原始光晕的统计特性,而我们的模拟的高分辨率使我们能够详细检查这些物体。特别是,我们探索了在总质量≈105-106M☉范围内在红移z≈25-30处形成的结合结构的分层增长。我们发现,当这些物体中的分子氢量达到临界水平时,通过旋转线发射进行冷却是有效的,并且会形成密集的冷气团块。我们将这些“气体云”确定为原始恒星形成的场所。在我们的模拟中,通过分子冷却形成气云的阈值对应于≈5×105 h-1M☉的临界晕圈质量,与先前的估计一致,但对z> 16范围内的红移的依赖性较小。暗晕的引力形成与气体云的热力学和化学演化之间的复杂相互作用损害了对临界H2分数的分析估计。大量积聚和合并产生的动态加热反对分子氢相对低效的冷却,从而延迟了快速增长的光晕中恒星形成云的产生。我们还研究了光解离紫外线对原始气体云形成的影响。我们考虑了两种极端情况,首先是在光学上较薄的界限内包括均匀的辐射场,其次是考虑到在虚拟区域内气体自屏蔽的最大作用。对于Lyman-Werner带通量J> 10-23 ergs s-1 cm-2 Hz-1 sr-1的辐射,氢分子会迅速解离,导致气体冷却效率低下。在我们考虑的两种情况下,可以通过计算辐射通量的平衡H2丰度并定义有效屏蔽系数来描述整体效果。根据我们的数值结果,我们建立了第一批恒星形成的半解析模型,并演示了如何将其与大型N体模拟相结合来预测早期宇宙中的恒星形成速度。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号