首页> 外文期刊>The Astrophysical journal >Simulations of Core Convection in Rotating A-Type Stars: Magnetic Dynamo Action
【24h】

Simulations of Core Convection in Rotating A-Type Stars: Magnetic Dynamo Action

机译:旋转A型星的核心对流的模拟:磁力发电机作用

获取原文
           

摘要

Core convection and dynamo activity deep within rotating A-type stars of 2 M☉ are studied with three-dimensional nonlinear simulations. Our modeling considers the inner 30% by radius of such stars, thus capturing within a spherical domain the convective core and a modest portion of the surrounding radiative envelope. The magnetohydrodynamic (MHD) equations are solved using the anelastic spherical harmonic (ASH) code to examine turbulent flows and magnetic fields, both of which exhibit intricate time dependence. By introducing small seed magnetic fields into our progenitor hydrodynamic models rotating at 1 and 4 times the solar rate, we assess here how the vigorous convection can amplify those fields and sustain them against ohmic decay. Dynamo action is indeed realized, ultimately yielding magnetic fields that possess energy densities comparable to that of the flows. Such magnetism reduces the differential rotation obtained in the progenitors, partly by Maxwell stresses that transport angular momentum poleward and oppose the Reynolds stresses in the latitudinal balance. In contrast, in the radial direction we find that the Maxwell and Reynolds stresses may act together to transport angular momentum. The central columns of slow rotation established in the progenitors are weakened, with the differential rotation waxing and waning in strength as the simulations evolve. We assess the morphology of the flows and magnetic fields, their complex temporal variations, and the manner in which dynamo action is sustained. Differential rotation and helical convection are both found to play roles in giving rise to the magnetic fields. The magnetism is dominated by strong fluctuating fields throughout the core, with the axisymmetric (mean) fields there relatively weak. The fluctuating magnetic fields decrease rapidly with radius in the region of overshooting, and the mean toroidal fields less so due to stretching by rotational shear.
机译:利用三维非线性模拟研究了2M☉旋转的A型恒星内部深部的核心对流和发电机活动。我们的模型考虑了此类恒星内部30%的半径,因此在球形区域内捕获了对流核和周围辐射包络线的适度部分。使用非弹性球谐(ASH)代码求解磁流体动力学(MHD)方程,以检查湍流和磁场,二者均表现出复杂的时间依赖性。通过将小的种子磁场引入到以太阳速度的1到4倍旋转的祖先水动力模型中,我们在这里评估了强对流如何能够放大这些磁场并保持其抵抗欧姆衰减。确实实现了发电机作用,最终产生的磁场的能量密度与流动的能量密度相当。这种磁性减少了在祖细胞中获得的旋转差,部分原因是麦克斯韦应力使极角动量向角传递,并在横向平衡中与雷诺应力相反。相反,在径向方向上,我们发现Maxwell和Reynolds应力可能共同作用以传输角动量。在祖细胞中建立的慢速旋转的中心柱被削弱,随着模拟的发展,差速旋转的强度会逐渐增加和减弱。我们评估了流动和磁场的形态,它们复杂的时间变化以及发电机作用持续的方式。发现差动旋转和螺旋对流都在产生磁场中起作用。磁场的核心是整个磁芯的强起伏磁场,而轴对称(均值)磁场相对较弱。在过冲区域中,波动的磁场随半径迅速减小,而平均环形磁场则由于旋转剪切的拉伸而减小。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号