首页> 外文期刊>The Astrophysical journal >Iterative Methods for the Non-LTE Transfer of Polarized Radiation: Resonance Line Polarization in One-dimensional Atmospheres
【24h】

Iterative Methods for the Non-LTE Transfer of Polarized Radiation: Resonance Line Polarization in One-dimensional Atmospheres

机译:极化辐射非LTE传输的迭代方法:一维大气中的共振线极化。

获取原文
           

摘要

This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the "exact" solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.
机译:本文展示了如何将一些运营商拆分方法推广到非LTE极化传输,这些运营商拆分方法最初是为解决非极化传输问题而开发的。这些是Olson,Auer和Buchler的基于Jacobi的加速Λ迭代(ALI)方法以及基于高斯-塞德尔和Trujillo Bueno和Fabiani Bendicho的连续超松弛(SOR)迭代的迭代方案。选择用于描述极化转移问题的理论框架是Landi Degl'Innocenti的量子电动力学(QED)理论,该理论根据原子密度矩阵的不可约张量来指定原子的激发态。第一篇论文通过集中于两级原子气体中的散射线极化的标准情况(包括由于微湍流和各向同性磁场弱而引起的汉乐效应),为非LTE极化转移的数值方法奠定了基础。我们开始证明,如果使用对应于非极化情况的“精确”解进行初始化,则众所周知的Λ迭代法会导致这种类型问题的自洽解。然后,我们说明如何从此简单的Λ迭代方案轻松导出上述拆分方法。我们证明,我们的SOR方法比基于Jacobi的ALI方法快10倍,而我们对Gauss-Seidel方法的实现快4倍。这些迭代方案独立于所选择的初始化而导致自洽解决方案。这些迭代方法的收敛速度非常高。它们不需要任何矩阵的构造或求逆,并且每次迭代的计算时间与Λ迭代方法的计算时间相似。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号