首页> 外文期刊>The Astrophysical journal >Simulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations
【24h】

Simulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations

机译:无碰撞冲击下电子加速的模拟:表面波动的影响

获取原文
           

摘要

Energetic electrons are a common feature of interplanetary shocks and planetary bow shocks, and they are invoked as a key component of models of nonthermal radio emission, such as solar radio bursts. A simulation study is carried out of electron acceleration for high Mach number, quasi-perpendicular shocks, typical of the shocks in the solar wind. Two-dimensional self-consistent hybrid shock simulations provide the electric and magnetic fields in which test particle electrons are followed. A range of different shock types, shock normal angles, and injection energies are studied. When the Mach number is low, or the simulation configuration suppresses fluctuations along the magnetic field direction, the results agree with theory assuming magnetic moment conserving reflection (or fast Fermi acceleration), with electron energy gains of a factor only 2-3. For high Mach numbers, with a realistic simulation configuration, the shock front has a dynamic rippled character. The corresponding electron energization is radically different: energy spectra display (1) considerably higher maximum energies than fast Fermi acceleration; (2) a plateau or shallow sloped region at intermediate energies 2-5 times the injection energy; (3) power-law falloff with increasing energy, for both upstream and downstream particles, with a slope decreasing as the shock normal angle approaches perpendicular; (4) sustained flux levels over a broader region of shock normal angle than for adiabatic reflection. All these features are in good qualitative agreement with observations, and show that dynamic structure in the shock surface at ion scales produces effective scattering and can be responsible for making high Mach number shocks effective sites for electron acceleration.
机译:高能电子是行星际激波和行星弓激波的共同特征,它们被称为非热辐射模型的重要组成部分,例如太阳无线电爆发。针对高马赫数,准垂直冲击(通常是太阳风中的冲击)的电子加速度进行了仿真研究。二维自洽混合冲击模拟提供了遵循测试粒子电子的电场和磁场。研究了一系列不同的冲击类型,冲击法向角和注入能量。当马赫数低或模拟配置抑制沿磁场方向的波动时,结果与理论相符,假定磁矩保持反射(或快速费米加速度),而电子能量增益仅为2-3。对于高马赫数,具有逼真的仿真配置,减震前部具有动态波纹特性。相应的电子激励是根本不同的:能谱显示(1)最大能量比快速费米加速度高得多; (2)处于中间能量或注入能量2-5倍的平坦或浅斜区; (3)上游和下游粒子的幂律衰减随能量的增加而增加,其斜率随着冲击法向角趋近于垂直方向而减小; (4)在比冲击绝热反射更宽的冲击法向角区域上的持续通量水平。所有这些特征在质量上都与观测结果吻合,并且表明在冲击尺度上,离子尺度上的冲击表面的动态结构会产生有效的散射,并可能使高马赫数的冲击成为电子加速的有效位点。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号