首页> 外文期刊>The Astrophysical journal >Analysis of Hydrodynamic Stability of Solar Tachocline Latitudinal Differential Rotation using a Shallow-Water Model
【24h】

Analysis of Hydrodynamic Stability of Solar Tachocline Latitudinal Differential Rotation using a Shallow-Water Model

机译:利用浅水模型分析太阳速球横向纬度旋转的水动力稳定性

获取原文
           

摘要

We examine the global, hydrodynamic stability of solar latitudinal differential rotation in a "shallow-water" model of the tachocline. Charbonneau, Dikpati, & Gilman have recently shown that two-dimensional disturbances are stable in the tachocline (which contains a pole-to-equator differential rotation s 18%). In our model, the upper boundary of the thin shell is allowed to deform in latitude, longitude, and time, thus including simplified three-dimensional effects. We examine the stability of differential rotation as a function of the effective gravity of the stratification in the tachocline. High effective gravity corresponds to the radiative part of the tachocline; for this case, the instability is similar to the strictly two-dimensional case (appearing only for s ≥ 18%), driven primarily by the kinetic energy of differential rotation extracted through the work of the Reynolds stress. For low effective gravity, which corresponds to the overshoot part of the tachocline, a second mode of instability occurs, fed again by the kinetic energy of differential rotation, which is primarily extracted by additional stresses and correlations of perturbations arising in the deformed shell. In this case, instability occurs for differential rotation as low as about 11% between equator and pole. If this mode occurs in the Sun, it should destabilize the latitudinal differential rotation in the overshoot part of the tachocline, even without a toroidal field. For the full range of effective gravity, the vorticity associated with the perturbations, coupled with radial motion due to horizontal divergence/convergence of the fluid, gives rise to a longitude-averaged, net kinetic helicity pattern, and hence a source of α-effect in the tachocline. Thus there could be a dynamo in the tachocline, driven by this α-effect and the latitudinal and radial gradients of rotation.
机译:我们在Tachocline的“浅水”模型中研究了太阳经纬度旋转的整体水动力稳定性。 Charbonneau,Dikpati和Gilman最近表明,在转速曲线中,二维扰动是稳定的(其极点至赤道旋转差s <18%)。在我们的模型中,允许薄壳的上边界在纬度,经度和时间上变形,从而包括简化的三维效果。我们检查了差速旋转的稳定性,该转速是速可可层中有效分层重力的函数。高有效重力对应于茶可可碱的辐射部分;在这种情况下,不稳定性类似于严格的二维情况(仅在s≥18%时出现),主要由通过雷诺应力的作用提取的旋转差动能驱动。对于较低的有效重力(对应于Tachocline的超调部分),会出现第二种不稳定性模式,再次由差动旋转动能提供,该动能主要由变形外壳中产生的附加应力和摄动相关性提取。在这种情况下,赤道和极点之间的差速旋转的不稳定性低至约11%。如果此模式在太阳下发生,则即使没有环形场,它也应使速驰层超调部分中的纬向差分旋转不稳定。对于有效重力的整个范围,与扰动相关的涡旋,以及由于流体的水平发散/会聚而引起的径向运动,产生了经度平均的净动力螺旋模式,因此产生了α效应在tachocline中。因此,在这种α效应以及旋转的纬度和径向梯度的驱动下,转速控制器中可能存在发电机。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号