首页> 外文期刊>The Astrophysical journal >COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL
【24h】

COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL

机译:太阳耀斑的加速,运输和水动力响应的组合建模。一,数值模型

获取原文
       

摘要

Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a ~10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.
机译:高能粒子的加速和传输以及大气等离子体的流体动力学是太阳耀斑的相互联系的方面,但是为了方便和简单起见,它们在过去是人为分离的。我们在这里提出了自洽相结合的Fo​​kker-Planck粒子建模和火炬等离子体的流体动力学模拟。高能电子采用斯坦福大学统一的加速,传输和辐射代码进行建模,而等离子体采用海军研究实验室的通量管代码进行建模。我们直接根据粒子传输代码计算了碰撞加热速率,该速率比基于近似解析解的先前研究更准确。我们重复了Mariska等人的模拟。借助幂定律的注入,使用新的加热速率的向下束电子。在这种情况下,他们的旧结果相差约10%。我们还使用了由随机加速模型提供的更为逼真的注入电子光谱,该模型具有从低能量的准热背景到高能量的非热尾的平滑过渡。包含低能电子会导致日冕中相对较多的热量(相对于色球),从而导致较大的向下热传导通量。电子加热,传导和辐射损耗的相互作用导致比以前的研究更强的色球蒸发,由于任意假定的低能量截止,低能量电子缺乏。高能电子和致辐射光子的能量和空间分布具有由色球层蒸发引起的密度分布变化的特征。尤其是,在蒸发前沿的密度跃变会导致发射增强,原则上可以通过X射线望远镜成像。该模型可用于研究太阳,太空和天体等离子体中的各种高能过程。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号