首页> 外文期刊>The Astrophysical journal >PARTICLE ACCELERATION IN RELATIVISTIC MAGNETIZED COLLISIONLESS PAIR SHOCKS: DEPENDENCE OF SHOCK ACCELERATION ON MAGNETIC OBLIQUITY
【24h】

PARTICLE ACCELERATION IN RELATIVISTIC MAGNETIZED COLLISIONLESS PAIR SHOCKS: DEPENDENCE OF SHOCK ACCELERATION ON MAGNETIC OBLIQUITY

机译:相对论磁性无损双电击中的粒子加速:磁化率对电击加速的依赖性

获取原文
           

摘要

We investigate shock structure and particle acceleration in relativistic magnetized collisionless pair shocks by means of 2.5D and 3D particle-in-cell simulations. We explore a range of inclination angles between the pre-shock magnetic field and the shock normal. We find that only magnetic inclinations corresponding to "subluminal" shocks, where relativistic particles following the magnetic field can escape ahead of the shock, lead to particle acceleration. The downstream spectrum in such shocks consists of a relativistic Maxwellian and a high-energy power-law tail with exponential cutoff. For increasing magnetic inclination in the subluminal range, the high-energy tail accounts for an increasing fraction of particles (from ~1% to ~2%) and energy (from ~4% to ~12%). The spectral index of the power law increases with angle from –2.8 ± 0.1 to –2.3 ± 0.1. For nearly parallel shocks, particle energization mostly proceeds via the diffusive shock acceleration process; the upstream scattering is provided by oblique waves which are generated by the high-energy particles that escape upstream. For larger subluminal inclinations, shock-drift acceleration is the main acceleration mechanism, and the upstream oblique waves regulate injection into the acceleration process. For "superluminal" shocks, self-generated shock turbulence is not strong enough to overcome the kinematic constraints, and the downstream particle spectrum does not show any significant suprathermal tail. As seen from the upstream frame, efficient acceleration in relativistic (Lorentz factor γ0 5) magnetized (σ 0.03) flows exists only for a very small range of magnetic inclination angles (34°/γ0), so relativistic astrophysical pair shocks have to be either nearly parallel or weakly magnetized to generate nonthermal particles. These findings place constraints on the models of pulsar wind nebulae, gamma-ray bursts, and jets from active galactic nuclei that invoke particle acceleration in relativistic magnetized shocks.
机译:我们通过2.5D和3D单元内粒子模拟研究相对论磁化无碰撞对冲击中的冲击结构和粒子加速度。我们探索了震前磁场与法线冲击之间的倾斜角度范围。我们发现只有与“亚腔内”冲击相对应的磁倾角,其中跟随磁场的相对论粒子可以在冲击之前逸出,从而导致粒子加速。此类冲击的下游频谱由相对论的麦克斯韦式和具有指数截止的高能幂律尾巴组成。为了增加在腔以下范围内的磁倾角,高能尾巴占颗粒(从〜1%到〜2%)和能量(从〜4%到〜12%)的比例增加。幂律的频谱指数从–2.8±0.1到–2.3±0.1的角度增加。对于几乎平行的冲击,粒子的激励主要是通过扩散冲击加速过程进行的。上游散射是由向上游逸出的高能粒子产生的斜波提供的。对于较大的腔下倾斜,冲击漂移加速是主要的加速机制,上游斜波会调节注入加速过程中的速度。对于“超光速”激波,自生激波湍流不足以克服运动学上的约束,并且下游粒子光谱未显示任何明显的超热尾部。从上游框架可以看出,相对论(洛伦兹因子γ05)磁化(σ0.03)流中的有效加速仅在很小的磁倾角范围(34°/γ0)中存在,因此相对论天体对冲击必须是几乎平行或弱磁化以生成非热粒子。这些发现对脉冲星云,伽马射线爆发和来自活跃银河核的射流的模型施加了约束,这些模型在相对论磁化冲击中引起粒子加速。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号