首页> 外文期刊>The Astrophysical journal >MULTILAYER FORMATION AND EVAPORATION OF DEUTERATED ICES IN PRESTELLAR AND PROTOSTELLAR CORES
【24h】

MULTILAYER FORMATION AND EVAPORATION OF DEUTERATED ICES IN PRESTELLAR AND PROTOSTELLAR CORES

机译:腓骨和原腓骨中氘化冰的多层形成和蒸发

获取原文
           

摘要

Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H2 and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.
机译:十年来,已经观察到几种分子对星前核和低质量原恒星的极大氘化。对低质量原恒星的新观测表明,在温暖的内部气体中,水的氘化程度比寒冷的外部环境中的低。我们将气粒星化模型与塌陷核的一维模型结合起来,以正确地跟踪星际冰的形成和氘化以及随后在低质量的原恒星包壳中的蒸发,以解释空间和氘的时间演变。天体化学模型采用多层方法追踪冰的形成和蒸发,并通过考虑H2和轻离子的自旋态,还包括一个最新的氘代化学网络。由于它们的缓慢形成,星际冰在化学上是非均质的,并且显示出氘向表面的分馏增加。冰中氘的分化诱导了原星包膜内氘的演化。温暖的内部区域很难氘化,因为它包含了冰的全部分子成分,而在寒冷的外部外壳中预测的氘则与高度氘化的冰层成比例。我们能够重现所观察到的原恒星壳内水氘的演变,但是我们仍然无法预测观察到的甲醛和甲醇超重氘。最后,这项研究扩展到对益生元化学很重要的复杂有机物的氘代中,与观察结果显示出很好的一致性,这表明我们可以使用氘代来追溯它们的机理和形成时刻。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号