首页> 外文期刊>The Astrophysical journal >MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1?AU AND BEYOND
【24h】

MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1?AU AND BEYOND

机译:使地球超地球,而不是让地球变得虚张声势:以0.1?AU或更高的速度将星状气体吸附到固体孔上

获取原文
           

摘要

Close-in super-Earths having radii 1-4 R ⊕ may possess hydrogen atmospheres comprising a few percent by mass of their rocky cores. We determine the conditions under which such atmospheres can be accreted by cores from their parent circumstellar disks. Accretion from the nebula is problematic because it is too efficient: we find that 10 M ⊕ cores embedded in solar metallicity disks tend to undergo runaway gas accretion and explode into Jupiters, irrespective of orbital location. The threat of runaway is especially dire at ~0.1?AU, where solids may coagulate on timescales orders of magnitude shorter than gas clearing times; thus nascent atmospheres on close-in orbits are unlikely to be supported against collapse by planetesimal accretion. The time to runaway accretion is well approximated by the cooling time of the atmosphere's innermost convective zone, whose extent is controlled by where H2 dissociates. Insofar as the temperatures characterizing H2 dissociation are universal, timescales for core instability tend not to vary with orbital distance—and to be alarmingly short for 10 M ⊕ cores. Nevertheless, in the thicket of parameter space, we identify two scenarios, not mutually exclusive, that can reproduce the preponderance of percent-by-mass atmospheres for super-Earths at ~0.1?AU, while still ensuring the formation of Jupiters at 1?AU. Scenario (a): planets form in disks with dust-to-gas ratios that range from ~20× solar at 0.1?AU to ~2× solar at 5?AU. Scenario (b): the final assembly of super-Earth cores from mergers of proto-cores—a process that completes quickly at ~0.1?AU once begun—is delayed by gas dynamical friction until just before disk gas dissipates completely. Both scenarios predict that the occurrence rate for super-Earths versus orbital distance, and the corresponding rate for Jupiters, should trend in opposite directions, as the former population is transformed into the latter: as gas giants become more frequent from ~1 to 10?AU, super-Earths should become more rare.
机译:半径为1-4 R⊕的近地超地球可能拥有氢气氛,其质量占其岩心的质量百分比。我们确定了在何种条件下,岩心可以从其父级星际圆盘中吸出这些气体。来自星云的积聚是有问题的,因为它效率太高:我们发现,埋在太阳金属度圆盘中的10 M⊕核趋于经历失控气体积聚并爆炸进入木星,而与轨道位置无关。失控的威胁在〜0.1?AU时尤其可怕,在这种情况下,固体凝结的时间尺度可能比气体清除时间短几个数量级。因此,近距离轨道上的新生大气不太可能通过行星状增生来防止崩溃。大气最内层对流区的冷却时间可以很好地估计失控积聚的时间,其冷却程度受H2离解的位置控制。只要表征H2分解的温度是普遍的,岩心不稳定性的时标就不会随轨道距离而变化,而且对于10 M⊕的岩心来说令人震惊地短。然而,在参数空间的丛林中,我们确定了两个不互斥的场景,它们可以再现约0.1?AU的超地球质量百分比大气的优势,同时仍确保在1?AU形成木星。 AU。方案(a):行星形成的盘形尘埃与气体的比率范围从0.1?AU的〜20倍太阳到5?AU的〜2倍太阳。方案(b):原始磁芯合并产生的超级地球磁芯的最终组装(该过程一旦开始就在〜0.1?AU处快速完成)由于气体动力摩擦而延迟到磁盘气体完全消散之前。两种情况都预测,随着前者转变为后者,超级地球与轨道距离的发生率以及木星的相应发生率应朝相反的方向发展:随着天然气巨人从〜1变到10越来越频繁?非盟,超级地球应该变得更加稀有。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号