首页> 外文期刊>The Astrophysical journal >RECONNECTION AND ELECTRON TEMPERATURE ANISOTROPY IN SUB-PROTON SCALE PLASMA TURBULENCE
【24h】

RECONNECTION AND ELECTRON TEMPERATURE ANISOTROPY IN SUB-PROTON SCALE PLASMA TURBULENCE

机译:亚质子尺度等离子体湍流中的重连接和电子温度各向异性

获取原文
           

摘要

Knowledge of turbulent behavior at sub-proton scales in magnetized plasmas is important for a full understanding of the energetics of astrophysical flows such as the solar wind. We study the formation of electron temperature anisotropy due to reconnection in the turbulent decay of sub-proton scale fluctuations using two-dimensional, particle-in-cell plasma simulations with a realistic electron-proton mass ratio and a guide field perpendicular to the simulation plane. A power spectrum fluctuation with approximately power-law form is created down to scales of the order of the electron gyroradius. We identify the signatures of collisionless reconnection at sites of X-point field geometry in the dynamic magnetic field topology, which gradually relaxes in complexity. The reconnection sites are generally associated with regions of strong parallel electron temperature anisotropy. The evolving topology of magnetic field lines connected to a reconnection site allows for the spatial mixing of electrons accelerated at multiple, spatially separated reconnection regions. This leads to the formation of multi-peaked velocity distribution functions with strong parallel temperature anisotropy. In a three-dimensional system that can support the appropriate wave vectors, the multi-peaked distribution functions would be expected to be unstable to kinetic instabilities, contributing to dissipation. The proposed mechanism of anisotropy formation is also relevant to space and astrophysical systems where the evolution of the plasma is constrained by linear temperature anisotropy instability thresholds. The presence of reconnection sites leads to electron energy gain, nonlocal velocity space mixing, and the formation of strong temperature anisotropy; this is evidence of an important role for reconnection in the dissipation of turbulent fluctuations.
机译:了解磁化等离子体中亚质子尺度的湍流行为对于全面理解诸如太阳风之类的天体流动的能量学非常重要。我们使用具有实际电子-质子质量比和垂直于模拟平面的引导场的二维,粒子-细胞等离子体模拟,研究由于亚质子尺度波动的湍流衰减中的重新连接而导致的电子温度各向异性的形成。产生具有近似幂律形式的功率谱波动,直至电子陀螺半径的数量级。我们在动态磁场拓扑中的X点场几何的站点上确定了无碰撞重新连接的特征,这在复杂性方面逐渐得到缓解。重连接位点通常与平行电子温度各向异性强的区域有关。连接到重新连接位置的磁场线的不断发展的拓扑结构允许在多个在空间上分离的重新连接区域加速电子的空间混合。这导致形成具有强平行温度各向异性的多峰速度分布函数。在可以支持适当波矢量的三维系统中,预计多峰分布函数对动力学不稳定是不稳定的,从而导致耗散。所提出的各向异性形成机理也与空间和天体系统有关,在该系统中,等离子体的演化受到线性温度各向异性不稳定性阈值的限制。重连接部位的存在导致电子能量的增加,非局部速度空间的混合以及强烈的温度各向异性的形成。这证明了重新连接在消除湍流波动中的重要作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号