首页> 外文期刊>The Astrophysical journal >Differential Rotation in Solar-like Convective Envelopes: Influence of Overshoot and Magnetism
【24h】

Differential Rotation in Solar-like Convective Envelopes: Influence of Overshoot and Magnetism

机译:类太阳对流包络中的旋转差:过冲和磁场的影响

获取原文
           

摘要

We present a set of four global Eulerian/semi-Lagrangian fluid solver (EULAG) hydrodynamical (HD) and magnetohydrodynamical (MHD) simulations of solar convection, two of which are restricted to the nominal convection zone, and the other two include an underlying stably stratified fluid layer. While all four simulations generate reasonably solar-like latitudinal differential rotation profiles where the equatorial region rotates faster than the polar regions, the rotational isocontours vary significantly among them. In particular, the purely HD simulation with a stable layer alone can break the Taylor–Proudman theorem and produce approximately radially oriented rotational isocontours at medium to high latitudes. We trace this effect to the buildup of a significant latitudinal temperature gradient in the stable fluid immediately beneath the convection zone, which imprints itself on the lower convection zone. It develops naturally in our simulations as a consequence of convective overshoot and rotational influence of rotation on convective energy fluxes. This favors the establishment of a thermal wind balance that allows evading the Taylor–Proudman constraint. A much smaller latitudinal temperature gradient develops in the companion MHD simulation that includes a stable fluid layer, reflecting the tapering of deep convective overshoot that occurs at medium to high latitudes, which is caused by the strong magnetic fields that accumulate across the base of the convection zone. The stable fluid layer also has a profound impact on the large-scale magnetic cycles developing in the two MHD simulations. Even though both simulations operate in the same convective parameter regime, the simulation that includes a stable layer eventually loses cyclicity and transits to a non-solar, steady quadrupolar state.
机译:我们介绍了一组四个对流的全球欧拉/半拉格朗日流体求解器(EULAG)流体动力学(HD)和磁流体动力学(MHD)模拟,其中两个仅限于标称对流区域,另外两个则包含一个稳定的下层分层的流体层。尽管所有四个模拟都产生了类似太阳的纬度差分旋转剖面图,其中赤道区域的旋转速度快于极地区域,但旋转等值线之间的变化却很大。特别是,仅具有稳定层的纯高清模拟可以打破泰勒-普鲁德曼定理,并在中高纬度地区产生近似于径向的旋转等值线。我们将此影响追溯到对流区正下方的稳定流体中明显的纬度温度梯度的累积,这本身就印在了较低的对流区。由于对流过冲和旋转对对流能量通量的旋转影响,它在我们的模拟中自然发展。这有利于建立热风平衡,从而可以规避泰勒-普鲁德曼约束。在伴随的MHD模拟中,形成了一个较小的纬向温度梯度,其中包括一个稳定的流体层,反映了在中高纬度处发生的深对流超调的逐渐变细,这是由强对流积聚在对流基础上引起的区。稳定的流体层还对两次MHD模拟中发展的大规模磁循环产生深远影响。即使两个模拟都在相同的对流参数范围内运行,但包含稳定层的模拟最终会失去周期性,并转换为非太阳能稳定的四极状态。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号