首页> 外文期刊>The Astrophysical journal >Rotational Failure of Rubble-pile Bodies: Influences of Shear and Cohesive Strengths
【24h】

Rotational Failure of Rubble-pile Bodies: Influences of Shear and Cohesive Strengths

机译:瓦砾堆体的旋转失效:抗剪强度和内聚强度的影响

获取原文
       

摘要

The shear and cohesive strengths of a rubble-pile asteroid could influence the critical spin at which the body fails and its subsequent evolution. We present results using a soft-sphere discrete element method to explore the mechanical properties and dynamical behaviors of self-gravitating rubble piles experiencing increasing rotational centrifugal forces. A comprehensive contact model incorporating translational and rotational friction and van der Waals cohesive interactions is developed to simulate rubble-pile asteroids. It is observed that the critical spin depends strongly on both the frictional and cohesive forces between particles in contact; however, the failure behaviors only show dependence on the cohesive force. As cohesion increases, the deformation of the simulated body prior to disruption is diminished, the disruption process is more abrupt, and the component size of the fissioned material is increased. When the cohesive strength is high enough, the body can disaggregate into similar-size fragments, which could be a plausible mechanism to form asteroid pairs or active asteroids. The size distribution and velocity dispersion of the fragments in high-cohesion simulations show similarities to the disintegrating asteroid P/2013 R3, indicating that this asteroid may possess comparable cohesion in its structure and experience rotational fission in a similar manner. Additionally, we propose a method for estimating a rubble pile's friction angle and bulk cohesion from spin-up numerical experiments, which provides the opportunity for making quantitative comparisons with continuum theory. The results show that the present technique has great potential for predicting the behaviors and estimating the material strengths of cohesive rubble-pile asteroids.
机译:碎石小行星的剪切强度和内聚强度可能会影响机体破裂的临界自旋及其随后的演化。我们目前使用软球离散元方法的结果来探索经历不断增加的旋转离心力的自重瓦砾桩的力学性能和动力学行为。建立了包含平移和旋转摩擦以及范德华凝聚力相互作用的综合接触模型,以模拟碎石堆小行星。可以看出,临界自旋强烈地取决于接触颗粒之间的摩擦力和内聚力。但是,失效行为仅显示出对内聚力的依赖性。随着内聚力的增加,破坏之前模拟物体的变形会减少,破坏过程会更加突然,裂变材料的组分尺寸也会增加。当内聚强度足够高时,人体会分解成类似大小的碎片,这可能是形成小行星对或活性小行星的合理机制。在高内聚力模拟中,碎片的大小分布和速度散布显示与崩解的小行星P / 2013 R3相似,表明该小行星可能在结构上具有相当的内聚力,并且以类似的方式经历了旋转裂变。此外,我们提出了一种通过旋转数值试验估算瓦砾桩的摩擦角和整体内聚力的方法,这为与连续体理论进行定量比较提供了机会。结果表明,该技术具有预测粘性碎石堆小行星的行为和估计其材料强度的巨大潜力。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号