...
首页> 外文期刊>Journal of vision >Lightness filling-in as a mechanism for achieving lightness constancy
【24h】

Lightness filling-in as a mechanism for achieving lightness constancy

机译:亮度填充是实现亮度恒定的一种机制

获取原文
           

摘要

In a series of recent publications, I have proposed a neural model of lightness computation in which large cortical receptive fields spatially integrate the outputs of oriented contrast detectors in V1/V2 (Rudd, 2010, 2013, 2014). The model explains quantitative data on perceptual edge integration in lightness, as well as matching data from the staircase-Gelb and Gilchrist dome paradigms. Here I demonstrate with computer simulations how lightness filling-in results from this same computational model. The filling-in produced by the model differs from that of previous filling-in models in which regions lying between surfaces boundaries are a??colored in.a?? The current model instead envisions filling-in as a a??trans-objecta?? mechanism that supports lightness constancy by establishing a unitary lightness scale that applies to multiple surfaces and objects within the visual scene. I demonstrate how a spreading achromatic color signal that is not stopped by object boundaries can support constancy and at the same time appeara??but only appeara??to be contained by object borders. The effect is achieved through the spatial interaction of spreading of separate lightness and darkness signals that combine like waves to either reinforce or cancel. A spreading darkness signal that encounters a luminance boundary can be partially cancelled by a lightness signal on the other side of the border, thus producing the perceptual impression that the darkness signal was stopped at the border. The model also accounts for Gilchrista??s Area Rule, according to which larger area regions that are not the highest luminance appear lighter than smaller regions having the same luminance. The geometrical patterns of lightness spreading produced by the model depend on the shapes of the model receptive fields. I present simulations produced under different assumptions about these receptive field shapes and explain how they reflect the properties of neural connections within the feedforward ventral pathway of visual cortex.
机译:在最近的一系列出版物中,我提出了一种亮度计算的神经模型,其中大的皮质感受野在空间上集成了V1 / V2中定向对比检测器的输出(Rudd,2010年,2013年,2014年)。该模型解释了有关亮度感知边缘整合的定量数据,以及楼梯-Gelb和Gilchrist圆顶范例的匹配数据。在这里,我通过计算机仿真演示了这种相同的计算模型如何产生亮度填充。该模型产生的填充不同于以前的填充模型,在填充模型中,位于表面边界之间的区域被“着色”。相反,当前模型设想将填写作为“跨对象”。通过建立适用于视觉场景中多个表面和对象的统一亮度标尺来支持亮度恒定性的机制。我演示了不受对象边界阻止的扩展消色差彩色信号如何支持恒定性,并同时出现“但仅出现在对象边界中”。通过单独的明暗信号传播的空间相互作用实现效果,这些信号将类似的波组合在一起以增强或抵消。可以通过边界另一侧的亮度信号部分抵消遇到亮度边界的扩展的黑暗信号,从而产生感觉,即黑暗信号停止在边界处。该模型还考虑了吉尔克里斯塔(Gilchrista)的面积规则,根据该规则,不是最高亮度的较大区域区域会比具有相同亮度的较小区域区域更亮。模型产生的亮度分布的几何图案取决于模型接受场的形状。我介绍了在不同的假设条件下对这些感受野形状进行的模拟,并解释了它们如何反映视觉皮层前馈腹侧通路内神经连接的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号