首页> 外文期刊>Bulletin of the American Physical Society >APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - High-Efficiency Multiscale Modeling of Cell Deformations in Confined Microenvironments in Microcirculation and Microfluidics
【24h】

APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - High-Efficiency Multiscale Modeling of Cell Deformations in Confined Microenvironments in Microcirculation and Microfluidics

机译:APS-流体动力学APS部门第70届年会-事件-在微循环和微流控中的受限微环境中细胞变形的高效多尺度建模

获取原文
           

摘要

We developed a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidics, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We develop a high-efficiency multiscale model of cell-fluid interaction. We pass the information from our molecular scale models to the cell scale to study the effect of molecular mutations. Using our high-efficiency boundary element methods of fluids, we will be able to run 3D simulations using a single CPU within several hours, which will enable us to run extensive parametric studies and optimization.
机译:我们开发了一种高效的多尺度建模方法,可预测细胞与微循环和微流体中的微环境(包括红细胞(RBC)和循环肿瘤细胞(CTC))相互作用期间的应力和变形。世界上有超过10亿人患有RBC疾病。在这些疾病中,红细胞的机械特性由于分子结构的改变而改变,这不仅对于了解疾病病理学很重要,而且为诊断提供了机会。另一方面,与健康细胞相比,癌细胞的机械性能也发生了变化。这可以导致获得跨越狭窄毛细血管网和内皮间隙的能力,这对于转移是至关重要的,转移是癌症死亡的主要原因。因此,预测微循环中的红细胞和四氯化碳的变形和应力非常重要。我们开发了细胞流体相互作用的高效多尺度模型。我们将信息从分子尺度模型传递到细胞尺度,以研究分子突变的影响。使用我们高效的流体边界元方法,我们将能够在几个小时内使用单个CPU运行3D模拟,这将使我们能够进行广泛的参数研究和优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号