...
首页> 外文期刊>Current Journal of Applied Science and Technology >Improved Synthesis of Flavonoids by Simulation of Nargenine Chalcone Biosynthetic Reaction
【24h】

Improved Synthesis of Flavonoids by Simulation of Nargenine Chalcone Biosynthetic Reaction

机译:通过模拟纳米尼醌生物合成反应来改善黄酮类化合物的合成

获取原文
           

摘要

Metabolic Control Analysis provides a quantitative description of concentration dynamics with the change in system parameters. A metabolic Control Analysis aids determination of the threshold value of metabolites involved in a reaction and also helps to understand the role of various parameters in a reaction. In this work, a metabolic model of a Naringenine chalcone biosynthetic reaction is defined and a time series simulation was carried out based on the law of Mass action. Initial concentration of p-Coumaroyl-CoA and Malonyl-CoA were taken 5.0*10~(-2) mM 2.2*10~(-3) mM respectively. This concentration was then simulated over time for 10 seconds to find the steady state. Final concentration of? Naringenine chalcone,CO_(2, )and CoA becomes 8.593946e-004 mM after 5.00 second of simulation at reaction constant 6.587753e-005 mM*ml/s. Steady state solution shows that Initial concentration of Naringenine chalcone was 2.199777e-003 mM which is eventually converted into 2.785128e+013 seconds half-life concentration of product at 7.898e-017 mM/s rate and ?0.000000e+000 mM*ml/s? rate constant. Phenylpropanoid pathway was analysed to predict all the enzymes that can maximise and minimise the concentration of ?Malonyl-CoA and P-Coumaroyl-CoA which leads to flavonoid biosynthesis. In the Phenylpropanoid pathway four enzymes Phenylalanine/tyrosine ammonia lyase, trans-cinnamate 4-monooxygenase, Phenylalanine ammonia lyase, maximise the flavonoid biosynthesis. This analysis shows that other enzymes minimise the concentrations of ?Malonyl-CoA and P-coumaroyl-CoA, these are Cinnamoyl Co A reductase, shikimate O hydroxyl transferase HCT), Oxidoreductase. Furthermore, Protein domain analysis of chalcone synthase mutants ( 1jwx Medicago sativa and 4yjy from Oryza sativa ) was done to predict structural features to understand reaction mechanism and structure-based engineering to maximise flavonoid biosynthesis. Natural sequence variation CHS G256A, G256V, G256L, and G256F mutants of residue 256 reduce the size of the active site cavity but quick diversification of product specificity occurs. The threshold concentration of Malonyl-CoA and P-coumaroyl-CoA were predicted, maximisation of this concentration leads to enhanced flavonoid biosynthesis. Inhibition of few enzymes may also maximise the flavonoid biosynthesis if appropriate inhibitors are used and a constant supply of Malonyl-CoA and P-Coumaroyl-CoA is maintained using activator molecules. Chalcone synthase Mutants diversify product specificity that occurs without loss of catalytic activity and any conformational changes.
机译:代谢控制分析提供了具有系统参数的变化的浓度动态的定量描述。代谢控制分析有助于确定反应中所涉及的代谢物的阈值,并有助于了解各种参数在反应中的作用。在这项工作中,定义了柚皮醌螯氢酮生物合成反应的代谢模型,并基于大规模作用规律进行时间序列模拟。初始浓度分别取出5.0×10〜(-2)mm 2.2×10〜(-3)mm的p-coumaroyl-coa和丙基-coa。然后在时间上模拟这种浓度10秒钟以找到稳定状态。最终浓度?在反应恒定的反应恒定6.587753E-005 mm * ml / s后,纳里宁宁醌,CO_(2,)和COA为8.593946E-004 mm。稳态解决方案表明,初始浓度的柚皮酮醌为2.199777e-003mm,最终以7.898e-017 mm / s的速率转化为2.785128e + 013秒的产品的半衰期浓度,α000000e+ 000 mm * ml / s?速率常数。分析苯基丙二醇途径以预测可以最大化和最小化α丙二醇-CoA和p-coumaroyl-CoA浓度的所有酶,这导致黄酮类化合物生物合成。在苯丙醇型途径四种酶苯丙氨酸/酪氨酸氨裂解酶,反式肉桂酸酯4-单氧基酶,苯丙氨酸氨裂解酶,最大化黄酮类生物合成。该分析表明,其他酶最小化α丙二醇-CoA和p-Coumaroyl-CoA的浓度,这些是肉桂酰共同的还原酶,Shikimate O羟甲基转移酶HCT),氧化还原酶。此外,采用醌合酶突变体的蛋白质结构域分析(1JWX Medicago Sativa和来自Oryza Sativa的4 yjy)以预测结构特征,以了解反应机制和基于结构的工程,以最大限度地提高黄酮类化合物生物合成。固定序列变异CHS G256A,G256V,G256L和G256F突变体降低了活性部位腔的大小,但发生了产品特异性的快速多样化。预测了丙二酰基-CoA和p-coumaroyl-CoA的阈值浓度,最大化该浓度导致增强的类黄酮生物合成。如果使用适当的抑制剂,少量酶的抑制还可以最大化类黄酮生物合成,并且使用活化剂分子保持恒定的丙二酰基和P-香豆酰基-COA。 Chalcone合成酶突变体多样化出现的产品特异性而不会损失催化活性和任何构象变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号