...
首页> 外文期刊>American Journal of Computational Mathematics >Prediction of Better Flow Control Parameters in MHD Flows Using a High Accuracy Finite Difference Scheme
【24h】

Prediction of Better Flow Control Parameters in MHD Flows Using a High Accuracy Finite Difference Scheme

机译:利用高精度有限差分方案预测MHD流量的更好流量控制参数

获取原文
           

摘要

We have successfully attempted to solve the equations of full-MHD model within the framework of Ψ style="font-family:Verdana;"> - ω style="font-family:Verdana;"> formulation with an objective to evaluate the performance of a new higher order scheme to predict better values of control parameters of the flow. In particular for MHD flows, magnetic field and electrical conductivity are the control parameters. In this work, the results from our efficient high order accurate scheme are compared with the results of second order method and significant discrepancies are noted in separation length, drag coefficient and mean Nusselt number. The governing Navier-Stokes equation is fully nonlinear due to its coupling with Maxwell’s equations. The momentum equation has several highly nonlinear body-force terms due to full-MHD model in cylindrical polar system. Our high accuracy results predict that a relatively lower magnetic field is sufficient to achieve full suppression of boundary layer and this is a favorable result for practical applications. The present computational scheme predicts that a drag-coefficient minimum can be achieved when β style="font-family:Verdana;">=0.4 style="font-family:Verdana;">which is much lower when compared to the value style="font-family:Verdana;"> β=1 style="font-family:Verdana;"> as given by second order method. For a special value of β style="font-family:Verdana;">=0.65 style="font-family:Verdana;">, it is found that the heat transfer rate is independent of electrical conductivity of the fluid. From the numerical values of physical quantities, we establish that the order of accuracy of the computed numerical results is fourth order accurate by using the method of divided differences.
机译:我们已成功地解决了在ψ y =“font-family:verdana;”> - ω style =“font-family: Verdana;“>配方,目的是评估新的高阶方案的性能,以预测流量的控制参数的更好值。特别是对于MHD流动,磁场和电导率是控制参数。在这项工作中,我们有效高阶精确方案的结果与二阶方法的结果进行比较,并且在分离长度,拖动系数和均值的界限中指出了显着的差异。由于其与Maxwell方程的耦合,管理Navier-Stokes方程是完全非线性的。由于圆柱极性系统中的全MHD模型,动量方程具有几种高度非线性体力术语。我们的高精度结果预测,相对较低的磁场足以实现完全抑制边界层,这是实际应用的有利结果。当前计算方案预测,当β <跨度样式=“字体家庭:verdana;”> = 0.4 style =“font-family:verdana时,可以实现拖累拖延系数最小值。 “>与值 样式=”font-family:verdana;“>β= 1 style =”font-family:Verdana;“>通过二阶方法。对于β 样式=“font-family:verdana;”> = 0.65 style =“font-family:verdana;”>,发现热传递速率与流体的电导率无关。根据物理量的数值,我们通过使用划分的差异方法确定计算的数值结果的准确性顺序是第四顺序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号