首页> 外文期刊>International Journal of Atmospheric and Oceanic Sciences >Inverse Climate Modelling Study of the Planet Venus
【24h】

Inverse Climate Modelling Study of the Planet Venus

机译:逆气候建模的行星金星

获取原文
           

摘要

The terrestrial planet Venus is classified by astronomers as an inferior planet because it is located closer to the Sun than the Earth. Venus orbits the Sun at a mean distance of 108.21 Million Km and receives an average annual solar irradiance of 2601.3 W/m~2, which is 1.911 times that of the Earth. A set of linked forward and inverse climate modelling studies were undertaken to determine whether a process of atmospheric energy retention and recycling could be established by a mechanism of energy partition between the solid illuminated surface and an overlying fully transparent, non-greenhouse gas atmosphere. Further, that this atmospheric process could then be used to account for the observed discrepancy between the average annual solar insolation flux and the surface tropospheric average annual temperature for Venus. Using a geometric climate model with a globular shape that preserves the key fundamental property of an illuminated globe, namely the presence on its surface of the dual environments of both a lit and an unlit hemisphere; we established that the internal energy flux within our climate model is constrained by a process of energy partition at the surface interface between the illuminated ground and the overlying air. The dual environment model we have designed permits the exploration and verification of the fundamental role that the atmospheric processes of thermal conduction and convection have in establishing and maintaining surface thermal enhancement within the troposphere of this terrestrial planet. We believe that the duality of energy partition ratio between the lit and unlit hemispheres applied to the model, fully accounts for the extreme atmospheric "greenhouse effect" of the planet Venus. We show that it is the meteorological process of air mass movement and energy recycling through the mechanism of convection and atmospheric advection, associated with the latitudinal hemisphere encompassing Hadley Cell that accounts for the planet's observed enhanced atmospheric surface warming. Using our model, we explore the form, nature and geological timing of the climatic transition that turned Venus from a paleo water world into a high-temperature, high-pressure carbon dioxide world.
机译:地球行星维纳斯被天文学家分类为劣势星球,因为它靠近太阳而不是地球。金星轨道轨道距离距离为10821万公里的平均距离,收到2601.3 W / m〜2的平均年度太阳辐照度,这是地球的1.911倍。进行了一组链接的前进和逆气候建模研究,以确定大气能量保留和再循环过程是否可以通过固体照明表面和覆盖的完全透明,非温室气体气氛的能量分配机制来建立。此外,这种大气过程可用于考虑观察到的平均年度太阳能溶解通量与金星的表面对流层平均年度的差异。使用具有球状形状的几何气候模型,可以保留照明地球仪的关键基本特性,即它在其灯光和偏离半球的双重环境的表面上的存在;我们确定,我们的气候模型内的内部能量通量受到照明地与上覆空气之间的表面界面处的能量分区的过程限制。我们设计的双环境模型允许探索和验证热传导和对流的大气过程在该地球上的对流层内建立和维持表面热增强的基本作用。我们认为,LIT和Ullit Hemispheres之间的能量分区比率的二元性,适用于该模型,完全占地球金星的极端大气“温室效应”。我们表明,通过对流和大气平流的机制,与纬度细胞占地球观察到的大气表面变暖的纬度细胞的纬线半球有关,通过对流和大气平流的机制,空气批量移动和能量回收的气象过程。使用我们的模型,我们探讨了气候过渡的形式,性质和地质时间,从古水域世界转变为高温,高压二氧化碳世界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号