首页> 外文期刊>ISIJ international >Pressure-drop Modelling in the Softening and Melting Test for Ferrous Burden
【24h】

Pressure-drop Modelling in the Softening and Melting Test for Ferrous Burden

机译:燃料造型造型熔化和熔化试验中的铁料

获取原文
           

摘要

The softening and melting (SM) under load test is routinely conducted to assess the quality of ferrous burden materials and to predict their possible performance in blast furnace. Due to complex phase interactions coupled with chemical reactions at an elevated temperature range (~973 to 1873 K), the flow dynamics in the test system are quite complex. This study systematically investigates the contraction behaviour and associated pressure drop in a SM test bed for sinter, lump (NBLL, Newman Blend Lump) and a mixture of these two types of ore (21 wt% NBLL + 79 wt% sinter). To quantify the structural changes in a sample bed, interrupted tests at various temperatures were conducted and analysed using both synchrotron X-ray computed tomography (CT) at a lower temperature range (1273 to 1473 K) and neutron CT at a higher temperature (1723 K). It was noted that existing packed bed pressure drop models (Ergun model, 1952, fused bed model, Sugiyama et al. , 1980, orifice model, Sugiyama et al. , 1980) and modified orifice model, Ichikawa et al. , 2015) exhibited divergence in their predictions at higher temperature when the porosity parameter was computed directly from the bed contraction data. To avoid this modelling failure, a growth-decay type porosity-temperature relationship based on extensive SM test data was incorporated in the well-known Ergun equation which estimated reasonable bed pressure drops. Furthermore, a simplified ore specific friction factor model was empirically derived which was also shown to produce reasonable pressure drop predictions for all types of ferrous burden samples.
机译:常规进行负载试验下的软化和熔化(SM)以评估铁料理材料的质量,并预测其在高炉中可能的性能。由于复杂的相互作用与高温范围(〜973至1873k)的化学反应耦合,测试系统中的流动动态非常复杂。本研究系统地研究了烧结,肿块(NBLL,NOWMAN混合物块)和这两种矿石的混合物中的SM试验台中的收缩行为和相关压降(21wt%nbll + 79wt%sinter)。为了量化样品床中的结构变化,使用在较低温度范围(1273至1473K)和更高温度下的Synchrotron X射线计算机断层扫描(CT)进行各种温度的中断测试,并在较高温度下进行中子CT(1723 k)。有人指出,现有的包装床压降模型(Ergun Model,1952,融合床模型,Sugiyama 等人。,1980,孔口模型,Sugiyama 等,1980)和修改的孔口模型,Ichikawa <我>等。 ,2015)当直接从床收缩数据计算孔隙率参数时,在更高的温度下表现出差异。为了避免这种造型失败,基于广泛的SM测试数据的生长衰减型孔隙率 - 温度关系纳入了众所周知的ergun方程,估计合理的床压降。此外,经验衍生简化的矿石特异性摩擦因子模型,该模型也显示出对所有类型的铁负荷样本产生合理的压降预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号