首页> 外文期刊>Geoscientific Model Development >An adaptive method for speeding up the numerical integration of chemical mechanisms in atmospheric chemistry models: application to GEOS-Chem version 12.0.0
【24h】

An adaptive method for speeding up the numerical integration of chemical mechanisms in atmospheric chemistry models: application to GEOS-Chem version 12.0.0

机译:一种自适应方法,用于加速大气化学模型中化学机制的数值集成:在Geos-Chem版本中的应用.12.0.0

获取原文
           

摘要

The major computational bottleneck in atmospheric chemistry models is the numerical integration of the stiff coupled system of kinetic equations describing the chemical evolution of the system as defined by the model chemical mechanism (typically over 100 coupled species). We present an adaptive method to greatly reduce the computational cost of that numerical integration in global 3-D models while maintaining high accuracy. Most of the atmosphere does not in fact require solving for the full chemical complexity of the mechanism, so considerable simplification is possible if one can recognize the dynamic continuum of chemical complexity required across the atmospheric domain. We do this by constructing a limited set of reduced chemical mechanisms (chemical regimes) to cover the range of atmospheric conditions and then pick locally and on the fly which mechanism to use for a given grid box and time step on the basis of computed production and loss rates for individual species. Application to the GEOS-Chem global 3-D model for oxidant–aerosol chemistry in the troposphere and stratosphere (full mechanism of 228 species) is presented. We show that 20 chemical regimes can largely encompass the range of conditions encountered in the model. Results from a 2-year GEOS-Chem simulation shows that our method can reduce the computational cost of chemical integration by 30 %–40 % while maintaining accuracy better than 1 % and with no error growth. Our method retains the full complexity of the original chemical mechanism where it is needed, provides the same model output diagnostics (species production and loss rates, reaction rates) as the full mechanism, and can accommodate changes in the chemical mechanism or in model resolution without having to reconstruct the chemical regimes.
机译:大气化学模型中的主要计算瓶颈是描述由模型化学机制(通常超过100种耦合物种)定义的系统化学演进的动力学方程的数值积分。我们提出了一种自适应方法,大大降低了全局3-D模型中该数值集成的计算成本,同时保持高精度。大多数大气实际上都没有要求解决机构的完全化学复杂性,因此如果可以识别大气结构域所需的化学复杂性的动态连续性,则可以实现相当大的简化。我们通过构建一套有限的化学机制(化学制度)来实现这一目标,以覆盖大气条件的范围,然后在本地挑选,使用该机制用于给定的网格箱和基于计算生产的时间步骤个别物种的损失率。提出了对对流层和平流层(228种全部机制)的氧化剂 - 气溶胶化学的Geos-chem全局3-D模型。我们表明,20个化学制度可以很大程度上包括模型中遇到的条件范围。 2年来的结果表明,我们的方法可以将化学整合的计算成本降低30%-40%,同时保持比1%更好的准确性,没有误差。我们的方法保留了所需的原始化学机制的全部复杂性,提供与完整机制相同的型号输出诊断(物种生产和损失,反应率,反应率,反应率,可以容纳化学机制的变化或模型分辨率必须重建化学制度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号