...
首页> 外文期刊>Physical Review X >Symmetry and Topology in Non-Hermitian Physics
【24h】

Symmetry and Topology in Non-Hermitian Physics

机译:非隐士物理的对称性和拓扑

获取原文
           

摘要

Non-Hermiticity enriches topological phases beyond the existing Hermitian framework. Whereas their unusual features with no Hermitian counterparts were extensively explored, a full understanding about the role of symmetry in non-Hermitian physics has still been elusive, and there remains an urgent need to establish their topological classification in view of rapid theoretical and experimental progress. Here, we develop a complete theory of symmetry and topology in non-Hermitian physics. We demonstrate that non-Hermiticity ramifies the celebrated Altland-Zirnbauer symmetry classification for insulators and superconductors. In particular, charge conjugation is defined in terms of transposition rather than complex conjugation due to the lack of Hermiticity, and hence chiral symmetry becomes distinct from sublattice symmetry. It is also shown that non-Hermiticity enables a Hermitian-conjugate counterpart of the Altland-Zirnbauer symmetry. Taking into account sublattice symmetry or pseudo-Hermiticity as an additional symmetry, the total number of symmetry classes is 38 instead of 10, which describe intrinsic non-Hermitian topological phases as well as non-Hermitian random matrices. Furthermore, due to the complex nature of energy spectra, non-Hermitian systems feature two different types of complex-energy gaps, pointlike and linelike vacant regions. On the basis of these concepts and K -theory, we complete classification of non-Hermitian topological phases in arbitrary dimensions and symmetry classes. Remarkably, non-Hermitian topology depends on the type of complex-energy gaps, and multiple topological structures appear for each symmetry class and each spatial dimension, which are also illustrated in detail with concrete examples. Moreover, the bulk-boundary correspondence in non-Hermitian systems is elucidated within our framework, and symmetries preventing the non-Hermitian skin effect are identified. Our classification not only categorizes recently observed lasing and transport topological phenomena, but also predicts a new type of symmetry-protected topological lasers with lasing helical edge states and dissipative topological superconductors with nonorthogonal Majorana edge states. Furthermore, our theory provides topological classification of Hermitian and non-Hermitian free bosons. Our work establishes a theoretical framework for the fundamental and comprehensive understanding of non-Hermitian topological phases and paves the way toward uncovering unique phenomena and functionalities that emerge from the interplay of non-Hermiticity and topology.
机译:非气候性丰富了现有封闭师范员的拓扑阶段。虽然他们不寻常的特征在没有隐士探索的情况下,探索了对对称性的对称作用的完全理解仍然是难以捉摸的,仍然迫切需要确定他们的拓扑分类,以便快速理论和实验进展。在这里,我们在非隐士物理学中制定了完整的对称性和拓扑理论。我们展示了非气馁性摧毁了绝缘子和超导体的庆祝的Allland-Zirnbauer对称分类。特别地,由于缺乏气候性而不是复杂的复合缀合而定义电荷缀合,因此手性对称性与子变量对称性不同。还表明非气候性能够使奥特兰锆宾尔对称的封闭师 - 共轭对应物。考虑到额外的对称性或伪气密性作为额外的对称性,对称类的总数是38而不是10,其描述了内在的非封闭型拓扑相以及非密封随机矩阵。此外,由于能谱的复杂性,非密封系统具有两种不同类型的复合能差距,点和丝状空置区域。在这些概念和k-othory的基础上,我们在任意维度和对称性课程中完成非封闭型拓扑阶段的分类。值得注意的是,非密封拓扑结构取决于复合能隙的类型,并且对于每个对称等级和每个空间尺寸,多种拓扑结构出现,这些结构也与具体实施例详细说明。此外,在我们的框架内阐明了非密封系统中的散装边界对应,并确定了防止非密封皮肤效应的对称性。我们的分类不仅对最近观察到的激光和运输拓扑现象进行了分类,而且还预测了一种新型的对称保护的拓扑激光器,具有激光螺旋边缘状态和具有非正交Majorana边缘状态的耗散拓扑超导体。此外,我们的理论提供了隐士和非私人自由玻色子的拓扑分类。我们的工作为非麦克尔维亚拓扑阶段的基本和全面了解,为非麦克尔迪人拓扑阶段制定了一个理论框架,并铺平了揭示了从非气密性和拓扑的相互作用出现的独特现象和功能的方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号