...
首页> 外文期刊>Physical Review X >Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects
【24h】

Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects

机译:热瞬态通过通用intRemembrane机械电效应激发神经元

获取原文
           

摘要

Modern advances in neurotechnology rely on effectively harnessing physical tools and insights towards remote neural control, thereby creating major new scientific and therapeutic opportunities. Specifically, rapid temperature pulses were shown to increase membrane capacitance, causing capacitive currents that explain neural excitation, but the underlying biophysics is not well understood. Here, we show that an intramembrane thermal-mechanical effect wherein the phospholipid bilayer undergoes axial narrowing and lateral expansion accurately predicts a potentially universal thermal capacitance increase rate of ~ 0.3 % / ° C . This capacitance increase and concurrent changes in the surface charge related fields lead to predictable exciting ionic displacement currents. The new MechanoElectrical Thermal Activation theory’s predictions provide an excellent agreement with multiple experimental results and indirect estimates of latent biophysical quantities. Our results further highlight the role of electro-mechanics in neural excitation; they may also help illuminate subthreshold and novel physical cellular effects, and could potentially lead to advanced new methods for neural control.
机译:神经技术的现代进展依靠有效利用物理工具和对远程神经控制的见解,从而创造了新的科学和治疗机会。具体地,显示快速温度脉冲来增加膜电容,导致解释神经激发的电容电流,但底层生物物理学并不符合很好的理解。在这里,我们表明,其中磷脂双层经历轴向变窄和横向膨胀的intremmermane热机械效应精确地预测潜在的通用热电容增加率〜0.3%/℃。表面电荷相关领域的该电容增加和同时变化导致可预测的激发离子位移电流。新的机械电热激活理论的预测提供了与多种实验结果和潜在生物物理量的间接估计的良好协议。我们的结果进一步突出了电力学在神经激励中的作用;它们还可以帮助照亮亚阈值和新颖的物理细胞效应,并且可能导致神经控制的先进新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号