首页> 外文期刊>Physical Review X >Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models
【24h】

Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

机译:Quantum辅助学习硬件嵌入式概率图形模型

获取原文
           

摘要

Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.
机译:主流机器学习技术,如深度学习和概率编程严重依赖于通常顽固概率分布的采样。在使用量子计算技术作为采样发动机加快这些任务或使它们更有效的潜在优势,越来越兴趣。然而,在我们评估其实际表现之前,必须克服最先进的量子退火者中的一些压迫挑战。由物理硬件实现中量子位之间的局部相互作用产生的稀疏连接被认为是对构建强大的生成无监督机器学习模型的质量的最严重限制。在这里,我们使用嵌入式技术向数据集添加冗余,允许我们增加量子退化器的建模能力。我们通过在具有高达940个量子位的实验中培训在手写数字和两个合成数据集的二值化数据集和两个合成数据集中的硬件嵌入式图形模型来说明我们的研究结果。我们的模型可以在量子硬件中培训,无需全面了解指定相应量子吉布布的分布的有效参数;因此,这种方法避免了在每次迭代中推断出有效温度的需要,加速学习;它还减轻了噪声在控制参数中的影响,使其稳健地与参考GIBBS分布偏差。我们的方法展示了使用量子退火器实现生成模型的可行性,并且它为基于机器学习相关的任务提供了适当的框架,用于基于机器学习相关的任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号