首页> 外文期刊>Plant direct. >Unoccupied aerial system enabled functional modeling of maize height reveals dynamic expression of loci
【24h】

Unoccupied aerial system enabled functional modeling of maize height reveals dynamic expression of loci

机译:无人居住的空中系统使能玉米高度的功能建模显示了基因座的动态表达

获取原文
           

摘要

Unoccupied aerial systems (UAS) were used to phenotype growth trajectories of inbred maize populations under field conditions. Three recombinant inbred line populations were surveyed on a weekly basis collecting RGB images across two irrigation regimens (irrigated and non-irrigated/rain fed). Plant height, estimated by the 95th percentile (P95) height from UAS generated 3D point clouds, exceeded 70% correlation (r) to manual ground truth measurements and 51% of experimental variance was explained by genetics. The Weibull sigmoidal function accurately modeled plant growth (R299%; RMSE: 4?cm) from P95 genetic means. The mean asymptote was strongly correlated (r2?=?0.66-0.77) with terminal plant height. Maximum absolute growth rates (mm/day) were weakly correlated with height and flowering time. The average inflection point ranged from 57 to 60?days after sowing (DAS) and was correlated with flowering time (r2?=?0.45-0.68). Functional growth parameters (asymptote, inflection point, growth rate) alone identified 34 genetic loci, each explaining 3-15% of total genetic variation. Plant height was estimated at one-day intervals to 85 DAS, identifying 58 unique temporal quantitative trait loci (QTL) locations. Genomic hotspots on chromosomes 1 and 3 indicated chromosomal regions associated with functional growth trajectories influencing flowering time, growth rate, and terminal growth. Temporal QTL demonstrated unique dynamic expression patterns not previously observable, and no QTL were significantly expressed throughout the entire growing season. UAS technologies improved phenotypic selection accuracy and permitted monitoring traits on a temporal scale previously infeasible using manual measurements, furthering understanding of crop development and biological trajectories.? 2020 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
机译:未占用的空中系统(UAS)用于在现场条件下的近交玉米群体的生长轨迹。每周进行调查三种重组近交系群体,每周进行调查跨两项灌溉方案(灌溉和非灌溉/雨Fed)收集RGB图像。由UA生成的3D点云的95百分位(P95)高度估计的植物高度超过了70%的相关性(R),以手动地理测量,遗传学解释了51%的实验方差。从P95遗传手段中,Weibull Sigmoidal功能精确建模植物生长(R299%; R299%; <4?cm)。平均渐近的末端植物高度强烈相关(R2?= 0.66-0.77)。最大绝对生长率(mm / day)与高度和开花时间弱相关。平均拐点范围为57至60?播种后的天数(DAS),与开花时间相关(R2?= 0.45-0.68)。单独鉴定34个遗传基因座的功能性生长参数(渐近,拐点,生长速率),各自解释了总遗传变异的3-15%。植物高度以一天间隔估计为85 das,识别58个独特的时间定量特性基因座(QTL)位置。基因组热点在染色体1和3例表明染色体区域,与影响开花时间,生长速率和末端生长的功能生长轨迹相关。时间QTL显示出以前未观察到的独特动态表达式模式,并且在整个生长季节中没有显着表达QTL。 UAS技术提高了表型选择精度,允许在以前不可行的时间范围内使用手动测量,进一步了解作物发展和生物轨迹的情况。? 2020作者。植物直接发表美国植物生物学家和实验生物学协会和约翰瓦里和儿子有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号