首页> 外文期刊>PLoS Computational Biology >A coupled-oscillator model of olfactory bulb gamma oscillations
【24h】

A coupled-oscillator model of olfactory bulb gamma oscillations

机译:嗅灯泡伽马振动耦合振荡器模型

获取原文
           

摘要

The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING), best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity.
机译:嗅灯泡不仅转换了主要感官表示的信息内容,还转换其底层编码度量。高方差,慢速时间尺寸气味表示由凸轮电路转换为基于紧密调节的主要神经元尖峰图案的次要表示。这种紧急的信号传导的快速时间尺度反映在伽马带局部场电位中,可能是为了有效地将嗅觉感官信息与中枢神经系统的时间调节信息网络有效地集成到中枢神经系统中。要了解这种转变及其与InteralAlip协调机制的一体化,要求我们了解其基本的动态原则。我们在这里使用生物物理学的嗅灯泡电路的多尺度模型,我们在这里表明抑制耦合耦合的内在振荡器框架,金字塔谐振型γγ(Pring),最能捕获嗅灯泡呈现的生理特性的多样性。最重要的是,这些性质包括在伽马带中的全局零相同步,在主神经元相对于该常见时钟中的信息峰值的相位限制以及该同步振荡制度对生物系统中观察到的多个具有挑战性条件的鲁棒性。这些条件包括在传入活化水平和兴奋性突触重量,主神经元的高水平不相关的背景活性,以及​​在时间内不规则并且远低于伽马频率的主要神经元和中间核中的尖峰频率的大量异质性。该耦合的蜂窝振荡器架构允许在各种外部条件下稳定和可复制的集合响应在各种外部条件下进行不同的感觉刺激,以及从学习依赖性突触可塑性产生的网络参数的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号