...
首页> 外文期刊>Polymer Sciences >Organic and Inorganic Chemistry 2018 The g-C3N4 surface-decorated Bi2O2CO3 for improved photo catalytic performance From theoretical calculation to practical antibiotics photo degradation in actual water-Huiping Zhao-Wuhan Institute of Technology
【24h】

Organic and Inorganic Chemistry 2018 The g-C3N4 surface-decorated Bi2O2CO3 for improved photo catalytic performance From theoretical calculation to practical antibiotics photo degradation in actual water-Huiping Zhao-Wuhan Institute of Technology

机译:有机和无机化学2018 G-C3N4表面装饰的Bi2O2CO3,用于改善理论计算的光催化性能,从理论计算到实际抗生素照片的实际水利 - Huiping Zhao-Wuhan工学院

获取原文
           

摘要

To overcome the issue of UV-light response character of Bi2O2CO3 due to its wide band gap, we primarily attempted to understand the possibility of improving the photocatalytic activity of Bi2O2CO3 via g-C3N4 surface decoration by the theoretical calculation. Subsequently, g-C3N4 surface-decorated Bi2O2CO3 was successfully prepared via a facile hydrothermal method. It was found that the g-C3N4 surface-decorated Bi2O2CO3 samples exhibited enhanced activities for the photo degradation of tetracycline compared with pure Bi2O2CO3 upon simulated solar light irradiation. Among them, the 10 wt% g-C3N4 surface-decorated Bi2O2CO3 sample showed the highest photo catalytic efficiency. First principle calculation and experimental data confirmed that the charge transfer at the interface between g-C3N4 and Bi2O2CO3 could significantly suppress the recombination of photogenerated electron-holes pairs, thus improving the photocatalytic performance. The proposed mechanism for the enhanced photocatalytic activity was also discussed. Moreover, the photodegradation of antibiotics over g-C3N4 surface-decorated Bi2O2CO3 was also performed in actual water matrix.
机译:为了克服Bi2O2Co3的紫外线响应特征的问题,由于其宽带隙,我们主要试图了解通过理论计算通过G-C3N4表面装饰改善Bi2O2CO3的光催化活性的可能性。随后,通过容易的水热法成功制备G-C3N4表面装饰的BI2O 2 CO 3。发现G-C3N4表面装饰的Bi2O2CO3样品与纯Bi2O2CO3在模拟的太阳光照射时表现出用于四环素的光降解的增强活性。其中,10wt%G-C3N4表面装饰的Bi2O 2 CO 3样品显示出最高的光催化效率。第一个原理计算和实验数据证实,G-C3N4和Bi2O2CO3之间的界面的电荷转移可以显着抑制光发性电子孔对的重组,从而提高光催化性能。还讨论了增强光催化活性的提出机制。此外,还在实际水基质中进行了对G-C3N4表面装饰的Bi2O 2 CO 3上的抗生素的光降解。

著录项

  • 来源
    《Polymer Sciences》 |2020年第2期|共2页
  • 作者

    Huiping Zhao;

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号