首页> 外文期刊>Journal of Microwaves, Optoelectronics and Electromagnetic Applications >On-load Back-EMF Optimization Based on the Back-EMF MST Method and Parametric Optimization
【24h】

On-load Back-EMF Optimization Based on the Back-EMF MST Method and Parametric Optimization

机译:基于反效率MST方法和参数优化的加载反型EMF优化

获取原文
           

摘要

This paper proposes an optimal design for a surface mounted permanent magnet synchronous machine (SM-PMSM) based on parametric optimization process to reduce the on-load Back-EMF distortions caused by an increase in the electromagnetic load and in the saturation. Unlike conventional methods described in the literature, the optimization approach proposed here accounts for the saturation effects, air gap flux density distribution and the evaluation of the on-load Back-EMF by means of finite element analysis, allied to the most recent on-load Back-EMF evaluation method, known as the Back-EMF MST (Maxwell stress tensor) method. Furthermore, the optimization process is performed considering either the machine's physical symmetry (based on pole numbers) and its nonevident symmetry (based on saturation effects and on the relevance of each tooth in the Back-EMF waveform), which is identified using the Back-EMF MST method. The proposed optimization process also analyzes different sets of variables based on symmetric and asymmetric tooth dimensions. The result is a machine with a reasonably improved design, higher average torque, lower torque ripple and smaller volume. In addition, the on-load Back-EMF is almost identical to the no-load one. Hence, the on-load cogging torque is almost identical to the no-load cogging torque.
机译:本文提出了一种基于参数优化过程的表面安装永磁同步机(SM-PMSM)的最佳设计,以减少由电磁负荷和饱和度的增加引起的负载反向EMF失真。与文献中描述的传统方法不同,这里提出的优化方法考虑到饱和效果,空气隙磁通密度分布和通过有限元分析的载荷反馈的评估,以最近的负载均有依赖于最新的负载反EMF评估方法,称为反效率MST(Maxwell Regress Tensor)方法。此外,考虑到机器的物理对称(基于极值)和其非传递对称性(基于饱和效应和后反态波形中的每个牙齿的相关性)来执行优化过程,这是使用后面识别的EMF MST方法。所提出的优化过程还基于对称和不对称齿尺寸分析不同的变量集。结果是一台具有合理改进的设计,平均扭矩较高,扭矩脉动和较小体积的机器。此外,负载反馈返回EMF几乎与No-Load One相同。因此,承载齿槽扭矩与空载齿槽扭矩几乎相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号