...
首页> 外文期刊>Atmospheric chemistry and physics >On the impact of future climate change on tropopause folds and tropospheric ozone
【24h】

On the impact of future climate change on tropopause folds and tropospheric ozone

机译:关于对流层压折叠和对流层臭氧的未来气候变化的影响

获取原文
           

摘要

Using a transient simulation for the period 1960–2100 with the state-of-the-art ECHAM5/MESSy Atmospheric Chemistry (EMAC) global model and a tropopause fold identification algorithm, we explore the future projected changes in tropopause folds, stratosphere-to-troposphere transport (STT) of ozone, and tropospheric ozone under the RCP6.0 scenario. Statistically significant changes in tropopause fold frequencies from 1970–1999 to 2070–2099 are identified in both hemispheres, regionally exceeding 3 %, and are associated with the projected changes in the position and intensity of the subtropical jet streams. A strengthening of ozone STT is projected for the future in both hemispheres, with an induced increase in transported stratospheric ozone tracer throughout the whole troposphere, reaching up to 10 nmol mol?1 in the upper troposphere, 8 nmol mol?1 in the middle troposphere, and 3 nmol mol?1 near the surface. Notably, the regions exhibiting the largest changes of ozone STT at 400 hPa coincide with those with the highest fold frequency changes, highlighting the role of the tropopause folding mechanism in STT processes under a changing climate. For both the eastern Mediterranean and Middle East (EMME) and Afghanistan (AFG) regions, which are known as hotspots of fold activity and ozone STT during the summer period, the year-to-year variability of middle-tropospheric ozone with stratospheric origin is largely explained by the short-term variations in ozone at 150 hPa and tropopause fold frequency. Finally, ozone in the lower troposphere is projected to decrease under the RCP6.0 scenario during MAM (March, April, and May) and JJA (June, July, and August) in the Northern Hemisphere and during DJF (December, January, and February) in the Southern Hemisphere, due to the decline of ozone precursor emissions and the enhanced ozone loss from higher water vapour abundances, while in the rest of the troposphere ozone shows a remarkable increase owing mainly to the STT strengthening and the stratospheric ozone recovery.
机译:使用1960 - 2001年期间的瞬态仿真与最先进的ECHAM5 /凌乱的大气化学(EMAC)全局模型和对流折叠识别算法,我们探讨了对流层褶皱的未来预测变化,平流层 - Ozone的对流层运输(STT),RCP6.0场景下的对流层臭氧。从1970-1999到2070-2099的统计学上显着的变化在2070-2099中均在半球上鉴定出来,区域上超过3%,并且与亚热带喷射流的位置和强度的投影变化相关。加强臭氧STT在两个半球中的未来预测,在整个整个对流层中诱导运输的平分臭氧示踪剂增加,在上层对流层中达到最多10nmol摩尔·1,中间对流层中的8个NmolΔ1和3个nmolΔ1接近表面。值得注意的是,表现出400hPa的臭氧STT变化的区域与具有最高频率变化的臭氧的变化,突出了对流动性气候下STT过程中的对流折叠折叠机制的作用。对于东部地中海和中东(EMME)和阿富汗(AFG)地区,称为夏季期间称为折叠活动和臭氧STT的热点,中层臭氧的逐年变异性具有平流层起源在很大程度上解释了150 HPA和对流折叠频率的臭氧的短期变化。最后,较低的对流层中的臭氧被预计在麦克雷斯(3月,4月和5月)和JJA(6月,7月,8月)在北半球和DJF(1月,1月,1月份)期间的RCP6.0情景下减少。 2月)在南半球,由于臭氧前体排放和从较高水蒸气丰富的增强臭氧损失的下降,而在其余的对流层臭氧中,主要是由于STT强化和平流层臭氧恢复而显着的增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号