首页> 外文期刊>RSC Advances >Atomic and electronic structure of solids of Ge2Br2PN, Ge2I2PN, Sn2Cl2PN, Sn2Br2PN and Sn2I2PN inorganic double helices: a first principles study
【24h】

Atomic and electronic structure of solids of Ge2Br2PN, Ge2I2PN, Sn2Cl2PN, Sn2Br2PN and Sn2I2PN inorganic double helices: a first principles study

机译:GE2BR2PN,GE2I2PN,SN2CL2PN,SN2BR2PN和SN2I2PN无机双螺旋的原子和电子结构:第一原理研究

获取原文
           

摘要

We report the results of density functional theory calculations on the atomic and electronic structure of solids formed by assembling A _(2) B _(2) PN (A = Ge and Sn, B = Cl, Br, and I) inorganic double helices. The calculations have been performed using a generalized gradient approximation for the exchange–correlation functional and including van der Waals interactions. Our results show that the double helices crystallize in a monoclinic lattice with van der Waals type weak interactions between the double helices. In all cases except Ge _(2) Cl _(2) PN, the solids are stable with a binding energy between the double helices ranging from 0.06 eV per atom to 0.09 eV per atom and inter-double helices separation of more than 3.33 ?. All the solids are semiconducting. Further calculations have been done by using meta-GGA with a modified Becke–Johnson functional to obtain better band gaps, which are found to lie in the range of 0.91 eV to 1.49 eV. In the case of Ge _(2) Br _(2) PN the solid is a direct band gap semiconductor although the isolated double helix has an indirect band gap and it is suggested to be interesting for photovoltaic, and other optoelectronic applications. The charge transfer between the atoms has been studied using Bader charge analysis and the DDEC6 method in the CHARGEMOL program, which suggests charge transfer from the outer helix to the inner helix.
机译:通过组装_(2)B _(2)PN(A = GE和Sn,B = CL,BR,C)无机双螺旋,对通过组装_(2)B _(2)PN(A = GE和SN,B = CL,B)形成的固体和电子结构的密度函数理论计算结果。已经使用对交换相关功能的广义梯度近似进行了计算,并且包括van der WaaS相互作用。我们的结果表明,双螺旋在双螺旋之间的van der Waals型弱相互作用中的单斜晶格中结晶。在除GE _(2)CL _(2)PN外的所有情况下,固体稳定,双螺旋之间的粘合能量在0.06eV /原子的0.09eV之间,每次原子和双耳间分离超过3.33? 。所有固体都是半导体。通过使用Meta-GGA使用改进的BECKE-JOWNSON功能来完成进一步的计算,以获得更好的带间隙,这被发现位于0.91eV至1.49eV的范围内。在Ge _(2)Br _(2)Pn的情况下,固体是直接带隙半导体,尽管隔离的双螺旋具有间接带隙,并且建议对光伏等光电应用有趣。在ChargeMol程序中使用獾电荷分析和DDEC6方法研究了原子之间的电荷转移,这表明从外螺旋到内螺旋的电荷转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号