首页> 外文期刊>RSC Advances >Porous SnO2 nanostructure with a high specific surface area for improved electrochemical performance
【24h】

Porous SnO2 nanostructure with a high specific surface area for improved electrochemical performance

机译:具有高比表面积的多孔SnO2纳米结构,可提高电化学性能

获取原文
           

摘要

Tin oxide (SnO _(2) ) has been attractive as an alternative to carbon-based anode materials because of its fairly high theoretical capacity during cycling. However, SnO _(2) has critical drawbacks, such as poor cycle stability caused by a large volumetric variation during the alloying/de-alloying reaction and low capacity at a high current density due to its low electrical conductivity. In this study, we synthesized a porous SnO _(2) nanostructure (n-SnO _(2) ) that has a high specific surface area as an anode active material using the Adams fusion method. From the Brunauer–Emmett–Teller analysis and transmission electron microscopy, the as-prepared SnO _(2) sample was found to have a mesoporous structure with a fairly high surface area of 122 m ~(2) g ~(?1) consisting of highly-crystalline nanoparticles with an average particle size of 5.5 nm. Compared to a commercial SnO _(2) , n-SnO _(2) showed significantly improved electrochemical performance because of its increased specific surface area and short Li ~(+) ion pathway. Furthermore, during 50 cycles at a high current density of 800 mA g ~(?1) , n-SnO _(2) exhibited a high initial capacity of 1024 mA h g ~(?1) and enhanced retention of 53.6% compared to c-SnO _(2) (496 mA h g ~(?1) and 23.5%).
机译:氧化锡(SnO _(2))作为循环过程中其相当高的理论能力,作为碳基阳极材料的替代品。然而,SnO _(2)具有关键缺点,例如由于其低电导率,在合金/除合金化反应期间由较大的容积变化和低容量引起的较差的循环稳定性。在该研究中,我们合成了使用ADAMS熔融方法的具有高比表面积的多孔链子SnO _(2)纳米结构(N-SnO _(2)),其具有高比表面积作为阳极活性材料。从Brunauer-Emmett-Teller分析和透射电子显微镜检查,发现如制备的SnO _(2)样品具有介孔结构,具有相当高的表面积为122m〜(2)G〜(?1)具有5.5nm的平均粒度的高度结晶纳米颗粒。与商业SnO _(2)相比,N-SnO _(2)显示出显着改善的电化学性能,因为其比表面积增加和短Li〜(+)离子途径。此外,在高电流密度为800mA g〜(Δ1)的50周期期间,N-SnO _(2)表现出1024mA Hg〜(α1)的高初始容量,与C相比增强了53.6%的保留-sno _(2)(496 ma hg〜(?1)和23.5%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号