首页> 外文期刊>RSC Advances >Controlled synthesis of few-layer SnSe2 by chemical vapor deposition
【24h】

Controlled synthesis of few-layer SnSe2 by chemical vapor deposition

机译:通过化学气相沉积控制少层SNSE2的合成

获取原文
           

摘要

Few-layer SnSe _(2) has intrinsic low thermal conductivity and unique phase transition from amorphous to crystalline state under laser irradiation. It has been extensively used in the fields of thermoelectric conversion and information storage. However, the traditional precursors like tin oxide and organic compounds have either high melting points or complex compositions, and the improper deposition temperature of the substrate may lead to mixed products, which impedes controllable synthesis of high-quality few-layer SnSe _(2) . Here, we propose a chemical vapor deposition (CVD) method, in which the precursor evaporation and deposition have been controlled via the adjustment of precursors/substrate positions, which effectively avoided mixed product growth, thus achieving the growth of high-quality few-layer SnSe _(2) . The calculated first-order temperature coefficient of the A _(1g) module is ?0.01549 cm ~(?1) K ~(?1) , which is superior to other two-dimensional (2D) materials. Meanwhile, two exciton emissions from few-layer SnSe _(2) have been found, for which the higher energy one (1.74 eV) has been assigned to near-band-gap emission, while the lower one (1.61 eV) may have roots in the surface state of SnSe _(2) . The few-layer SnSe _(2) also exhibits large exciton binding energies (0.195 and 0.177 eV), which are greater than those of common semiconductors and may contribute to stability of excitons, showing broad application prospects in the field of optoelectronics.
机译:几层SNSE _(2)具有在激光照射下从非晶态到晶体状态的固有的低导热率和独特的相变。它已广泛用于热电转换和信息存储领域。然而,如氧化锡和有机化合物等传统的前体具有高熔点或复杂组合物,并且基材的沉积温度不当可能导致混合产品,其阻碍了高质量的少层SNSE _(2)的可控合成。在此,我们提出了一种化学气相沉积(CVD)方法,其中通过调节前体/基板位置来控制前体蒸发和沉积,从而有效地避免了混合产品生长,从而实现了高质量的几层的生长SNSE _(2)。 A _(1g)模块的计算的一阶温度系数是α0.01549cm〜(Δ1)k〜(α1),其优于其他二维(2d)材料。同时,已经发现了来自几层SNSE _(2)的两个激子排放,其中一个(1.74eV)已经分配到近带隙发射,而下降(1.61eV)可能有根在SNSE _(2)的表面状态。少数层SNSE _(2)也表现出大的激子结合能量(0.195和0.177eV),其大于普通半导体,并且可能有助于激子的稳定性,显示光电子领域的广泛应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号