首页> 外文期刊>RSC Advances >MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor
【24h】

MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor

机译:MOF衍生的锰氧化物/碳纳米复合材料,具有稳定的不对称超级电容器的凸起电容

获取原文
           

摘要

Owing to immense application potentials in electrochemical energy storages, metal organic framework (MOF)-derived metal oxide/carbon nanocomposites have attracted extensive interest of research. Although thermolysis has been widely employed to convert MOFs into various active materials, a large set of in situ changes in chemical composition, phase(s) and morphology requires delicate control over heating parameters. Through an innovative two-stage process, Mn-MIL-100 is first transformed into MnO@C by annealing at 700 °C under N _(2) flow, which is then transformed into Mn _(3) O _(4) @C at 200 °C in air, while retaining a high surface area. The appropriate retention of carbon content for Mn _(3) O _(4) @C can also be easily obtained with the control of heating time. In contrast, thermolysis of MnO@C at higher temperatures gives rise to manganese oxides with negligible carbon content and a greatly reduced surface area. The optimized Mn _(3) O _(4) @C-2 h, derived from MnO@C at 200 °C for 2 hours, showed the highest capacitance, far exceeding that of MnO@C and other derivatives. When combined with graphene oxide (GO) nanosheets to form a flexible Mn _(3) O _(4) @C/rGO paper electrode, it demonstrated a capacitance of 328.4 F cm ~(?3) . The Mn _(3) O _(4) @C/rGO-based asymmetric supercapacitor thus assembled also shows favorable performance. The present work demonstrates the excellent controllability afforded by the innovative two-stage thermolysis in optimizing the electrochemical performance of MOF-derived active materials as electrode materials in supercapacitors.
机译:由于电化学能量储存中的巨大应用势,金属有机框架(MOF) - 一定的金属氧化物/碳纳米复合材料引起了广泛的研究兴趣。虽然热解已被广泛用于将MOF转化为各种活性材料,但是化学成分,相和形态的大量原位变化需要细腻控制加热参数。通过创新的两级过程,Mn-MIL-100首先通过在N _(2)流下的700℃下通过退火转换为MnO @ C,然后将其转换为Mn _(3)O _(4)@ C在空气中200°C,同时保持高表面积。通过对加热时间的控制,也可以容易地获得适当的Mn _(3)O _(4)℃的碳含量的保留碳含量。相反,在较高温度下MNO @ C的热解产生碳含量可忽略不计的锰氧化物和大大减少的表面积。优化的MN _(3)O _(4)o _(4)o _(4)o _(4)@ c-2 h从200°C的MnO @ C达到2小时,显示出最高电容,远远超过MnO @ C和其他衍生物的电容。当与石墨烯氧化物(GO)纳米片结合形成柔性Mn _(3)O _(4)o _(4)o _(4)×/ rgo纸电极时,它证明了328.4f cm〜(α3)的电容。由此组装的Mn _(3)O _(4)@ C / RGO的非对称超级电容器也显示出有利的性能。本作者通过在优化Mof衍生的活性材料的电化学性能作为超级电容器中的电极材料,表明了通过创新的两级热解提供的优异可控性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号