首页> 外文期刊>RSC Advances >Silicon nanowires and nanotrees: elaboration and optimization of new 3D architectures for high performance on-chip supercapacitors
【24h】

Silicon nanowires and nanotrees: elaboration and optimization of new 3D architectures for high performance on-chip supercapacitors

机译:硅纳米线和纳米龙:用于芯片高效的新型3D架构的阐述和优化

获取原文
           

摘要

Micro-supercapacitors are increasingly foreseen as future energy storage or power buffer solutions for small scale integration on-chip. However, widely used electrode materials or electrolytes often proved to be incompatible with microelectronics processes. Although being the material of choice for on-chip integration, nanostructured silicon electrodes only recently caught attention for potential applications, and they displayed promising results especially for bottom-up silicon nanostructures, where the design liberty and fine control of nanostructure morphologies allow considerable improvements. The present work deals with the optimization of highly doped silicon nanowires (Si-NWs) and nanotrees (Si-NTrs) pioneered in the laboratory using an innovative, fast and efficient electroless gold deposition method in order to explore a wide variety of 3D architectures and their physicochemical properties. Through a systematic study of branches and trunks morphologies, the nature inspired nanotrees have been drastically improved compared to previously published works, resulting in excellent electrode properties, showing high energy and power densities, respectively, up to 2.8 mJ cm ~(?2) and 235 mW cm ~(?2) . In addition, a cyclability of over a million charge–discharge galvanostatic cycles was determined using an enlarged electrochemical window of 4 V in an ionic liquid electrolyte.
机译:微型超级电容器越来越多地预见,因为未来的储能或电力缓冲器解决方案,用于小型集成片上的小规模集成。然而,广泛使用的电极材料或电解质经常被证明与微电子方法不相容。虽然是片上整合的选择材料,但纳米结构硅电极最近仅引起了潜在的应用,并且它们尤其显示出对自下而上硅纳米结构的有希望的结果,其中纳米结构形态的设计自由和微量控制允许相当大的改进。本工作涉及使用创新,快速高效的化学金沉积法在实验室中优化高度掺杂的硅纳米线(Si-NWS)和纳米乐(Si-Ntrs),以探索各种各样的3D架构和它们的物理化学性质。通过对分支和树干形态的系统研究,与先前公布的作品相比,自然启发的纳米群已被大幅提高,导致优异的电极性能,分别显示出高达2.8MJ厘米〜(?2)的高能量和功率密度。 235 mw cm〜(?2)。此外,使用在离子液体电解质中的4V的放大电化学窗口测定超过一百万个电荷放电的循环的可循环性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号