首页> 外文期刊>RSC Advances >Charge transfer plasmon resonances across silver–molecule–silver junctions: estimating the terahertz conductance of molecules at near-infrared frequencies
【24h】

Charge transfer plasmon resonances across silver–molecule–silver junctions: estimating the terahertz conductance of molecules at near-infrared frequencies

机译:跨银 - 分子 - 银色连接电荷转移等离子体共振:估计近红外频率下分子的太赫兹电导

获取原文
           

摘要

Quantum plasmon resonances have been recently observed across molecular tunnel junctions made of two plasmonic resonators bridged by a self-assembled monolayer (SAM). The energy of this quantum plasmon mode, i.e. , the tunneling charge transfer plasmon (tCTP), depends on the properties of the molecules bridging the gaps. The present work extends these studies theoretically using a generalized space-charge corrected electromagnetic model to a wider range of SAM structures (with various molecular lengths and conductances) sandwiched between silver nanocubes, which could support different types of CTP resonances in addition to tCTP. The space-charge corrected electromagnetic model treats the charge injection and charge transport separately, and assumes a Drude expression (with damping frequency on the order of driving frequency) to model the space-charge limited transport problem. Our theoretical modelling of these organic–inorganic hybrid structures establishes a one-to-one relationship between the conductivity of the SAM and the resonant energy of the CTP modes. Considering that the SAM consists of a finite number of molecules bridging the two nanocubes in a parallel arrangement, we introduce a method to estimate the molecular conductance at the CTP resonant frequency. Experimental results from two types of SAMs were examined as a proof-of-concept: the THz conductance is estimated to be 0.2 G _(0) per EDT (1,2-ethanedithiolate) molecule at 140 THz and 0.4 G _(0) for a BDT (1,4-benzenedithiolate) molecule at 245 THz. This approach paves the way of using plasmonic oscillations for measuring the THz conductance of single molecules at near-infrared frequencies.
机译:最近跨越由由自组装单层(SAM)桥接的两种等离子体谐振器制成的分子隧道交叉点的量子等离子体共振。该量子等离子体模式的能量,即隧道电荷转移等离子体(TCTP)取决于桥接间隙的分子的性质。本作本作在理论上使用广义空间电荷校正的电磁模型在较宽范围的SAM结构(具有各种分子长和电导)之间夹在银纳米孔之间的较宽范围内的山姆结构(具有各种分子长和电导),这可以支持不同类型的CTP共振,除TCTP之外。空间电荷校正电磁模型单独处理电荷注入和电荷传输,并假设博德表达式(随着驱动频率的顺序的阻尼频率)来模拟空间电荷有限运输问题。我们对这些有机无机混合结构的理论建模建立了SAM的导电性与CTP模式的共振能之间的一对一关系。考虑到SAM由桥接两种纳米轴的有限数分子组成,我们介绍一种估计CTP谐振频率下的分子传导的方法。检查来自两种SAM的实验结果作为概念验证:估计在140 rHz和0.4g _(0)下为0.2g(1,2-乙酸二盐)分子为0.2g _(0)。对于245至THz的BDT(1,4-苯二硫酸盐)分子。这种方法铺设了使用等离子体振荡来测量近红外频率下单分子的THz电导的方式。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号